మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

8x-3y=1,-8x+5y=9
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
8x-3y=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
8x=3y+1
సమీకరణం యొక్క రెండు వైపులా 3yని కూడండి.
x=\frac{1}{8}\left(3y+1\right)
రెండు వైపులా 8తో భాగించండి.
x=\frac{3}{8}y+\frac{1}{8}
\frac{1}{8} సార్లు 3y+1ని గుణించండి.
-8\left(\frac{3}{8}y+\frac{1}{8}\right)+5y=9
మరొక సమీకరణములో xను \frac{3y+1}{8} స్థానంలో ప్రతిక్షేపించండి, -8x+5y=9.
-3y-1+5y=9
-8 సార్లు \frac{3y+1}{8}ని గుణించండి.
2y-1=9
5yకు -3yని కూడండి.
2y=10
సమీకరణం యొక్క రెండు వైపులా 1ని కూడండి.
y=5
రెండు వైపులా 2తో భాగించండి.
x=\frac{3}{8}\times 5+\frac{1}{8}
x=\frac{3}{8}y+\frac{1}{8}లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{15+1}{8}
\frac{3}{8} సార్లు 5ని గుణించండి.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{15}{8}కు \frac{1}{8}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
8x-3y=1,-8x+5y=9
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-3\\-8&5\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8\times 5-\left(-3\left(-8\right)\right)}&-\frac{-3}{8\times 5-\left(-3\left(-8\right)\right)}\\-\frac{-8}{8\times 5-\left(-3\left(-8\right)\right)}&\frac{8}{8\times 5-\left(-3\left(-8\right)\right)}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}&\frac{3}{16}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{16}+\frac{3}{16}\times 9\\\frac{1}{2}+\frac{1}{2}\times 9\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=5
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
8x-3y=1,-8x+5y=9
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-8\times 8x-8\left(-3\right)y=-8,8\left(-8\right)x+8\times 5y=8\times 9
8x మరియు -8xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -8తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 8తో గుణించండి.
-64x+24y=-8,-64x+40y=72
సరళీకృతం చేయండి.
-64x+64x+24y-40y=-8-72
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -64x+40y=72ని -64x+24y=-8 నుండి వ్యవకలనం చేయండి.
24y-40y=-8-72
64xకు -64xని కూడండి. -64x మరియు 64x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-16y=-8-72
-40yకు 24yని కూడండి.
-16y=-80
-72కు -8ని కూడండి.
y=5
రెండు వైపులా -16తో భాగించండి.
-8x+5\times 5=9
-8x+5y=9లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-8x+25=9
5 సార్లు 5ని గుణించండి.
-8x=-16
సమీకరణము యొక్క రెండు భాగాల నుండి 25ని వ్యవకలనం చేయండి.
x=2
రెండు వైపులా -8తో భాగించండి.
x=2,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.