x, yని పరిష్కరించండి
x=-12
y=-123
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
7x-y=39
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
11x-y=-9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
7x-y=39,11x-y=-9
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
7x-y=39
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
7x=y+39
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{7}\left(y+39\right)
రెండు వైపులా 7తో భాగించండి.
x=\frac{1}{7}y+\frac{39}{7}
\frac{1}{7} సార్లు y+39ని గుణించండి.
11\left(\frac{1}{7}y+\frac{39}{7}\right)-y=-9
మరొక సమీకరణములో xను \frac{39+y}{7} స్థానంలో ప్రతిక్షేపించండి, 11x-y=-9.
\frac{11}{7}y+\frac{429}{7}-y=-9
11 సార్లు \frac{39+y}{7}ని గుణించండి.
\frac{4}{7}y+\frac{429}{7}=-9
-yకు \frac{11y}{7}ని కూడండి.
\frac{4}{7}y=-\frac{492}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{429}{7}ని వ్యవకలనం చేయండి.
y=-123
సమీకరణము యొక్క రెండు వైపులా \frac{4}{7}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{7}\left(-123\right)+\frac{39}{7}
x=\frac{1}{7}y+\frac{39}{7}లో yను -123 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-123+39}{7}
\frac{1}{7} సార్లు -123ని గుణించండి.
x=-12
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{123}{7}కు \frac{39}{7}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-12,y=-123
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
7x-y=39
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
11x-y=-9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
7x-y=39,11x-y=-9
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}39\\-9\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}39\\-9\end{matrix}\right)
\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}39\\-9\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-1\\11&-1\end{matrix}\right))\left(\begin{matrix}39\\-9\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-11\right)}&-\frac{-1}{7\left(-1\right)-\left(-11\right)}\\-\frac{11}{7\left(-1\right)-\left(-11\right)}&\frac{7}{7\left(-1\right)-\left(-11\right)}\end{matrix}\right)\left(\begin{matrix}39\\-9\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{11}{4}&\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}39\\-9\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 39+\frac{1}{4}\left(-9\right)\\-\frac{11}{4}\times 39+\frac{7}{4}\left(-9\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\-123\end{matrix}\right)
అంకగణితము చేయండి.
x=-12,y=-123
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
7x-y=39
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
11x-y=-9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
7x-y=39,11x-y=-9
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7x-11x-y+y=39+9
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 11x-y=-9ని 7x-y=39 నుండి వ్యవకలనం చేయండి.
7x-11x=39+9
yకు -yని కూడండి. -y మరియు y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-4x=39+9
-11xకు 7xని కూడండి.
-4x=48
9కు 39ని కూడండి.
x=-12
రెండు వైపులా -4తో భాగించండి.
11\left(-12\right)-y=-9
11x-y=-9లో xను -12 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
-132-y=-9
11 సార్లు -12ని గుణించండి.
-y=123
సమీకరణం యొక్క రెండు వైపులా 132ని కూడండి.
y=-123
రెండు వైపులా -1తో భాగించండి.
x=-12,y=-123
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}