మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

7x+y=-9,-3x-y=5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
7x+y=-9
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
7x=-y-9
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{7}\left(-y-9\right)
రెండు వైపులా 7తో భాగించండి.
x=-\frac{1}{7}y-\frac{9}{7}
\frac{1}{7} సార్లు -y-9ని గుణించండి.
-3\left(-\frac{1}{7}y-\frac{9}{7}\right)-y=5
మరొక సమీకరణములో xను \frac{-y-9}{7} స్థానంలో ప్రతిక్షేపించండి, -3x-y=5.
\frac{3}{7}y+\frac{27}{7}-y=5
-3 సార్లు \frac{-y-9}{7}ని గుణించండి.
-\frac{4}{7}y+\frac{27}{7}=5
-yకు \frac{3y}{7}ని కూడండి.
-\frac{4}{7}y=\frac{8}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{27}{7}ని వ్యవకలనం చేయండి.
y=-2
సమీకరణము యొక్క రెండు వైపులా -\frac{4}{7}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{7}\left(-2\right)-\frac{9}{7}
x=-\frac{1}{7}y-\frac{9}{7}లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{2-9}{7}
-\frac{1}{7} సార్లు -2ని గుణించండి.
x=-1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{2}{7}కు -\frac{9}{7}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-1,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
7x+y=-9,-3x-y=5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&1\\-3&-1\end{matrix}\right))\left(\begin{matrix}-9\\5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7\left(-1\right)-\left(-3\right)}&-\frac{1}{7\left(-1\right)-\left(-3\right)}\\-\frac{-3}{7\left(-1\right)-\left(-3\right)}&\frac{7}{7\left(-1\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{3}{4}&-\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}-9\\5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-9\right)+\frac{1}{4}\times 5\\-\frac{3}{4}\left(-9\right)-\frac{7}{4}\times 5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-2\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=-2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
7x+y=-9,-3x-y=5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-3\times 7x-3y=-3\left(-9\right),7\left(-3\right)x+7\left(-1\right)y=7\times 5
7x మరియు -3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 7తో గుణించండి.
-21x-3y=27,-21x-7y=35
సరళీకృతం చేయండి.
-21x+21x-3y+7y=27-35
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -21x-7y=35ని -21x-3y=27 నుండి వ్యవకలనం చేయండి.
-3y+7y=27-35
21xకు -21xని కూడండి. -21x మరియు 21x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4y=27-35
7yకు -3yని కూడండి.
4y=-8
-35కు 27ని కూడండి.
y=-2
రెండు వైపులా 4తో భాగించండి.
-3x-\left(-2\right)=5
-3x-y=5లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-3x=3
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
x=-1
రెండు వైపులా -3తో భాగించండి.
x=-1,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.