మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x-\frac{1}{3}y=27
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=\frac{1}{3}y+27
సమీకరణం యొక్క రెండు వైపులా \frac{y}{3}ని కూడండి.
x=\frac{1}{6}\left(\frac{1}{3}y+27\right)
రెండు వైపులా 6తో భాగించండి.
x=\frac{1}{18}y+\frac{9}{2}
\frac{1}{6} సార్లు \frac{y}{3}+27ని గుణించండి.
\frac{4}{5}\left(\frac{1}{18}y+\frac{9}{2}\right)+\frac{1}{4}y=\frac{25}{4}
మరొక సమీకరణములో xను \frac{y}{18}+\frac{9}{2} స్థానంలో ప్రతిక్షేపించండి, \frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}.
\frac{2}{45}y+\frac{18}{5}+\frac{1}{4}y=\frac{25}{4}
\frac{4}{5} సార్లు \frac{y}{18}+\frac{9}{2}ని గుణించండి.
\frac{53}{180}y+\frac{18}{5}=\frac{25}{4}
\frac{y}{4}కు \frac{2y}{45}ని కూడండి.
\frac{53}{180}y=\frac{53}{20}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{18}{5}ని వ్యవకలనం చేయండి.
y=9
సమీకరణము యొక్క రెండు వైపులా \frac{53}{180}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{18}\times 9+\frac{9}{2}
x=\frac{1}{18}y+\frac{9}{2}లో yను 9 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{1+9}{2}
\frac{1}{18} సార్లు 9ని గుణించండి.
x=5
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{2}కు \frac{9}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=5,y=9
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&-\frac{-\frac{1}{3}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\\-\frac{\frac{4}{5}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&\frac{6}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}&\frac{10}{53}\\-\frac{24}{53}&\frac{180}{53}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}\times 27+\frac{10}{53}\times \frac{25}{4}\\-\frac{24}{53}\times 27+\frac{180}{53}\times \frac{25}{4}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
అంకగణితము చేయండి.
x=5,y=9
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{4}{5}\times 6x+\frac{4}{5}\left(-\frac{1}{3}\right)y=\frac{4}{5}\times 27,6\times \frac{4}{5}x+6\times \frac{1}{4}y=6\times \frac{25}{4}
6x మరియు \frac{4x}{5}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను \frac{4}{5}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
\frac{24}{5}x-\frac{4}{15}y=\frac{108}{5},\frac{24}{5}x+\frac{3}{2}y=\frac{75}{2}
సరళీకృతం చేయండి.
\frac{24}{5}x-\frac{24}{5}x-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{24}{5}x+\frac{3}{2}y=\frac{75}{2}ని \frac{24}{5}x-\frac{4}{15}y=\frac{108}{5} నుండి వ్యవకలనం చేయండి.
-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
-\frac{24x}{5}కు \frac{24x}{5}ని కూడండి. \frac{24x}{5} మరియు -\frac{24x}{5} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-\frac{53}{30}y=\frac{108}{5}-\frac{75}{2}
-\frac{3y}{2}కు -\frac{4y}{15}ని కూడండి.
-\frac{53}{30}y=-\frac{159}{10}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{75}{2}కు \frac{108}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=9
సమీకరణము యొక్క రెండు వైపులా -\frac{53}{30}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
\frac{4}{5}x+\frac{1}{4}\times 9=\frac{25}{4}
\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}లో yను 9 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
\frac{4}{5}x+\frac{9}{4}=\frac{25}{4}
\frac{1}{4} సార్లు 9ని గుణించండి.
\frac{4}{5}x=4
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{9}{4}ని వ్యవకలనం చేయండి.
x=5
సమీకరణము యొక్క రెండు వైపులా \frac{4}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=5,y=9
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.