మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x+5y=27,2x+y=13
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x+5y=27
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=-5y+27
సమీకరణము యొక్క రెండు భాగాల నుండి 5yని వ్యవకలనం చేయండి.
x=\frac{1}{6}\left(-5y+27\right)
రెండు వైపులా 6తో భాగించండి.
x=-\frac{5}{6}y+\frac{9}{2}
\frac{1}{6} సార్లు -5y+27ని గుణించండి.
2\left(-\frac{5}{6}y+\frac{9}{2}\right)+y=13
మరొక సమీకరణములో xను -\frac{5y}{6}+\frac{9}{2} స్థానంలో ప్రతిక్షేపించండి, 2x+y=13.
-\frac{5}{3}y+9+y=13
2 సార్లు -\frac{5y}{6}+\frac{9}{2}ని గుణించండి.
-\frac{2}{3}y+9=13
yకు -\frac{5y}{3}ని కూడండి.
-\frac{2}{3}y=4
సమీకరణము యొక్క రెండు భాగాల నుండి 9ని వ్యవకలనం చేయండి.
y=-6
సమీకరణము యొక్క రెండు వైపులా -\frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{5}{6}\left(-6\right)+\frac{9}{2}
x=-\frac{5}{6}y+\frac{9}{2}లో yను -6 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=5+\frac{9}{2}
-\frac{5}{6} సార్లు -6ని గుణించండి.
x=\frac{19}{2}
5కు \frac{9}{2}ని కూడండి.
x=\frac{19}{2},y=-6
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x+5y=27,2x+y=13
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\13\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}6&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}27\\13\end{matrix}\right)
\left(\begin{matrix}6&5\\2&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}27\\13\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\2&1\end{matrix}\right))\left(\begin{matrix}27\\13\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-5\times 2}&-\frac{5}{6-5\times 2}\\-\frac{2}{6-5\times 2}&\frac{6}{6-5\times 2}\end{matrix}\right)\left(\begin{matrix}27\\13\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{5}{4}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}27\\13\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 27+\frac{5}{4}\times 13\\\frac{1}{2}\times 27-\frac{3}{2}\times 13\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{2}\\-6\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{19}{2},y=-6
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x+5y=27,2x+y=13
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 6x+2\times 5y=2\times 27,6\times 2x+6y=6\times 13
6x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
12x+10y=54,12x+6y=78
సరళీకృతం చేయండి.
12x-12x+10y-6y=54-78
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 12x+6y=78ని 12x+10y=54 నుండి వ్యవకలనం చేయండి.
10y-6y=54-78
-12xకు 12xని కూడండి. 12x మరియు -12x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4y=54-78
-6yకు 10yని కూడండి.
4y=-24
-78కు 54ని కూడండి.
y=-6
రెండు వైపులా 4తో భాగించండి.
2x-6=13
2x+y=13లో yను -6 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x=19
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x=\frac{19}{2}
రెండు వైపులా 2తో భాగించండి.
x=\frac{19}{2},y=-6
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.