మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x-3y=2,6x+2y=-5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x-3y=2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=3y+2
సమీకరణం యొక్క రెండు వైపులా 3yని కూడండి.
x=\frac{1}{5}\left(3y+2\right)
రెండు వైపులా 5తో భాగించండి.
x=\frac{3}{5}y+\frac{2}{5}
\frac{1}{5} సార్లు 3y+2ని గుణించండి.
6\left(\frac{3}{5}y+\frac{2}{5}\right)+2y=-5
మరొక సమీకరణములో xను \frac{3y+2}{5} స్థానంలో ప్రతిక్షేపించండి, 6x+2y=-5.
\frac{18}{5}y+\frac{12}{5}+2y=-5
6 సార్లు \frac{3y+2}{5}ని గుణించండి.
\frac{28}{5}y+\frac{12}{5}=-5
2yకు \frac{18y}{5}ని కూడండి.
\frac{28}{5}y=-\frac{37}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{12}{5}ని వ్యవకలనం చేయండి.
y=-\frac{37}{28}
సమీకరణము యొక్క రెండు వైపులా \frac{28}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{3}{5}\left(-\frac{37}{28}\right)+\frac{2}{5}
x=\frac{3}{5}y+\frac{2}{5}లో yను -\frac{37}{28} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{111}{140}+\frac{2}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{3}{5} సార్లు -\frac{37}{28}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{11}{28}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{111}{140}కు \frac{2}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{11}{28},y=-\frac{37}{28}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x-3y=2,6x+2y=-5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&-3\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}5&-3\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
\left(\begin{matrix}5&-3\\6&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\6&2\end{matrix}\right))\left(\begin{matrix}2\\-5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-\left(-3\times 6\right)}&-\frac{-3}{5\times 2-\left(-3\times 6\right)}\\-\frac{6}{5\times 2-\left(-3\times 6\right)}&\frac{5}{5\times 2-\left(-3\times 6\right)}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{3}{28}\\-\frac{3}{14}&\frac{5}{28}\end{matrix}\right)\left(\begin{matrix}2\\-5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 2+\frac{3}{28}\left(-5\right)\\-\frac{3}{14}\times 2+\frac{5}{28}\left(-5\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{28}\\-\frac{37}{28}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{11}{28},y=-\frac{37}{28}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x-3y=2,6x+2y=-5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6\times 5x+6\left(-3\right)y=6\times 2,5\times 6x+5\times 2y=5\left(-5\right)
5x మరియు 6xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 6తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
30x-18y=12,30x+10y=-25
సరళీకృతం చేయండి.
30x-30x-18y-10y=12+25
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 30x+10y=-25ని 30x-18y=12 నుండి వ్యవకలనం చేయండి.
-18y-10y=12+25
-30xకు 30xని కూడండి. 30x మరియు -30x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-28y=12+25
-10yకు -18yని కూడండి.
-28y=37
25కు 12ని కూడండి.
y=-\frac{37}{28}
రెండు వైపులా -28తో భాగించండి.
6x+2\left(-\frac{37}{28}\right)=-5
6x+2y=-5లో yను -\frac{37}{28} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
6x-\frac{37}{14}=-5
2 సార్లు -\frac{37}{28}ని గుణించండి.
6x=-\frac{33}{14}
సమీకరణం యొక్క రెండు వైపులా \frac{37}{14}ని కూడండి.
x=-\frac{11}{28}
రెండు వైపులా 6తో భాగించండి.
x=-\frac{11}{28},y=-\frac{37}{28}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.