మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x-4y=-2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
5y+1-x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
5y-x=-1
రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
5x-4y=-2,-x+5y=-1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x-4y=-2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=4y-2
సమీకరణం యొక్క రెండు వైపులా 4yని కూడండి.
x=\frac{1}{5}\left(4y-2\right)
రెండు వైపులా 5తో భాగించండి.
x=\frac{4}{5}y-\frac{2}{5}
\frac{1}{5} సార్లు 4y-2ని గుణించండి.
-\left(\frac{4}{5}y-\frac{2}{5}\right)+5y=-1
మరొక సమీకరణములో xను \frac{4y-2}{5} స్థానంలో ప్రతిక్షేపించండి, -x+5y=-1.
-\frac{4}{5}y+\frac{2}{5}+5y=-1
-1 సార్లు \frac{4y-2}{5}ని గుణించండి.
\frac{21}{5}y+\frac{2}{5}=-1
5yకు -\frac{4y}{5}ని కూడండి.
\frac{21}{5}y=-\frac{7}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2}{5}ని వ్యవకలనం చేయండి.
y=-\frac{1}{3}
సమీకరణము యొక్క రెండు వైపులా \frac{21}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{4}{5}\left(-\frac{1}{3}\right)-\frac{2}{5}
x=\frac{4}{5}y-\frac{2}{5}లో yను -\frac{1}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{4}{15}-\frac{2}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{4}{5} సార్లు -\frac{1}{3}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{2}{3}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{4}{15}కు -\frac{2}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{2}{3},y=-\frac{1}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x-4y=-2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
5y+1-x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
5y-x=-1
రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
5x-4y=-2,-x+5y=-1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}&-\frac{-4}{5\times 5-\left(-4\left(-1\right)\right)}\\-\frac{-1}{5\times 5-\left(-4\left(-1\right)\right)}&\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{4}{21}\\\frac{1}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-2\right)+\frac{4}{21}\left(-1\right)\\\frac{1}{21}\left(-2\right)+\frac{5}{21}\left(-1\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{1}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{2}{3},y=-\frac{1}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x-4y=-2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
5y+1-x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
5y-x=-1
రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
5x-4y=-2,-x+5y=-1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5x-\left(-4y\right)=-\left(-2\right),5\left(-1\right)x+5\times 5y=5\left(-1\right)
5x మరియు -xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
-5x+4y=2,-5x+25y=-5
సరళీకృతం చేయండి.
-5x+5x+4y-25y=2+5
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -5x+25y=-5ని -5x+4y=2 నుండి వ్యవకలనం చేయండి.
4y-25y=2+5
5xకు -5xని కూడండి. -5x మరియు 5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-21y=2+5
-25yకు 4yని కూడండి.
-21y=7
5కు 2ని కూడండి.
y=-\frac{1}{3}
రెండు వైపులా -21తో భాగించండి.
-x+5\left(-\frac{1}{3}\right)=-1
-x+5y=-1లో yను -\frac{1}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-x-\frac{5}{3}=-1
5 సార్లు -\frac{1}{3}ని గుణించండి.
-x=\frac{2}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{5}{3}ని కూడండి.
x=-\frac{2}{3}
రెండు వైపులా -1తో భాగించండి.
x=-\frac{2}{3},y=-\frac{1}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.