మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+y=-1,2x+5y=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+y=-1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-y-1
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-y-1\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{1}{5}y-\frac{1}{5}
\frac{1}{5} సార్లు -y-1ని గుణించండి.
2\left(-\frac{1}{5}y-\frac{1}{5}\right)+5y=7
మరొక సమీకరణములో xను \frac{-y-1}{5} స్థానంలో ప్రతిక్షేపించండి, 2x+5y=7.
-\frac{2}{5}y-\frac{2}{5}+5y=7
2 సార్లు \frac{-y-1}{5}ని గుణించండి.
\frac{23}{5}y-\frac{2}{5}=7
5yకు -\frac{2y}{5}ని కూడండి.
\frac{23}{5}y=\frac{37}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{2}{5}ని కూడండి.
y=\frac{37}{23}
సమీకరణము యొక్క రెండు వైపులా \frac{23}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{5}\times \frac{37}{23}-\frac{1}{5}
x=-\frac{1}{5}y-\frac{1}{5}లో yను \frac{37}{23} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{37}{115}-\frac{1}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{5} సార్లు \frac{37}{23}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{12}{23}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{37}{115}కు -\frac{1}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{12}{23},y=\frac{37}{23}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+y=-1,2x+5y=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&1\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}5&1\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
\left(\begin{matrix}5&1\\2&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-2}&-\frac{1}{5\times 5-2}\\-\frac{2}{5\times 5-2}&\frac{5}{5\times 5-2}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&-\frac{1}{23}\\-\frac{2}{23}&\frac{5}{23}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\left(-1\right)-\frac{1}{23}\times 7\\-\frac{2}{23}\left(-1\right)+\frac{5}{23}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{23}\\\frac{37}{23}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{12}{23},y=\frac{37}{23}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+y=-1,2x+5y=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 5x+2y=2\left(-1\right),5\times 2x+5\times 5y=5\times 7
5x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
10x+2y=-2,10x+25y=35
సరళీకృతం చేయండి.
10x-10x+2y-25y=-2-35
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 10x+25y=35ని 10x+2y=-2 నుండి వ్యవకలనం చేయండి.
2y-25y=-2-35
-10xకు 10xని కూడండి. 10x మరియు -10x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-23y=-2-35
-25yకు 2yని కూడండి.
-23y=-37
-35కు -2ని కూడండి.
y=\frac{37}{23}
రెండు వైపులా -23తో భాగించండి.
2x+5\times \frac{37}{23}=7
2x+5y=7లో yను \frac{37}{23} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x+\frac{185}{23}=7
5 సార్లు \frac{37}{23}ని గుణించండి.
2x=-\frac{24}{23}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{185}{23}ని వ్యవకలనం చేయండి.
x=-\frac{12}{23}
రెండు వైపులా 2తో భాగించండి.
x=-\frac{12}{23},y=\frac{37}{23}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.