మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+6y=-3,3x+7y=5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+6y=-3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-6y-3
సమీకరణము యొక్క రెండు భాగాల నుండి 6yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-6y-3\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{6}{5}y-\frac{3}{5}
\frac{1}{5} సార్లు -6y-3ని గుణించండి.
3\left(-\frac{6}{5}y-\frac{3}{5}\right)+7y=5
మరొక సమీకరణములో xను \frac{-6y-3}{5} స్థానంలో ప్రతిక్షేపించండి, 3x+7y=5.
-\frac{18}{5}y-\frac{9}{5}+7y=5
3 సార్లు \frac{-6y-3}{5}ని గుణించండి.
\frac{17}{5}y-\frac{9}{5}=5
7yకు -\frac{18y}{5}ని కూడండి.
\frac{17}{5}y=\frac{34}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{9}{5}ని కూడండి.
y=2
సమీకరణము యొక్క రెండు వైపులా \frac{17}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{6}{5}\times 2-\frac{3}{5}
x=-\frac{6}{5}y-\frac{3}{5}లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-12-3}{5}
-\frac{6}{5} సార్లు 2ని గుణించండి.
x=-3
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{12}{5}కు -\frac{3}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-3,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+6y=-3,3x+7y=5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&6\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}5&6\\3&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
\left(\begin{matrix}5&6\\3&7\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&6\\3&7\end{matrix}\right))\left(\begin{matrix}-3\\5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5\times 7-6\times 3}&-\frac{6}{5\times 7-6\times 3}\\-\frac{3}{5\times 7-6\times 3}&\frac{5}{5\times 7-6\times 3}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{17}&-\frac{6}{17}\\-\frac{3}{17}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}-3\\5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{17}\left(-3\right)-\frac{6}{17}\times 5\\-\frac{3}{17}\left(-3\right)+\frac{5}{17}\times 5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=-3,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+6y=-3,3x+7y=5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 5x+3\times 6y=3\left(-3\right),5\times 3x+5\times 7y=5\times 5
5x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
15x+18y=-9,15x+35y=25
సరళీకృతం చేయండి.
15x-15x+18y-35y=-9-25
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x+35y=25ని 15x+18y=-9 నుండి వ్యవకలనం చేయండి.
18y-35y=-9-25
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-17y=-9-25
-35yకు 18yని కూడండి.
-17y=-34
-25కు -9ని కూడండి.
y=2
రెండు వైపులా -17తో భాగించండి.
3x+7\times 2=5
3x+7y=5లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x+14=5
7 సార్లు 2ని గుణించండి.
3x=-9
సమీకరణము యొక్క రెండు భాగాల నుండి 14ని వ్యవకలనం చేయండి.
x=-3
రెండు వైపులా 3తో భాగించండి.
x=-3,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.