మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+2y=17,2x+3y=3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+2y=17
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-2y+17
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-2y+17\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{2}{5}y+\frac{17}{5}
\frac{1}{5} సార్లు -2y+17ని గుణించండి.
2\left(-\frac{2}{5}y+\frac{17}{5}\right)+3y=3
మరొక సమీకరణములో xను \frac{-2y+17}{5} స్థానంలో ప్రతిక్షేపించండి, 2x+3y=3.
-\frac{4}{5}y+\frac{34}{5}+3y=3
2 సార్లు \frac{-2y+17}{5}ని గుణించండి.
\frac{11}{5}y+\frac{34}{5}=3
3yకు -\frac{4y}{5}ని కూడండి.
\frac{11}{5}y=-\frac{19}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{34}{5}ని వ్యవకలనం చేయండి.
y=-\frac{19}{11}
సమీకరణము యొక్క రెండు వైపులా \frac{11}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{5}\left(-\frac{19}{11}\right)+\frac{17}{5}
x=-\frac{2}{5}y+\frac{17}{5}లో yను -\frac{19}{11} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{38}{55}+\frac{17}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{2}{5} సార్లు -\frac{19}{11}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{45}{11}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{38}{55}కు \frac{17}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{45}{11},y=-\frac{19}{11}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+2y=17,2x+3y=3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
\left(\begin{matrix}5&2\\2&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-2\times 2}&-\frac{2}{5\times 3-2\times 2}\\-\frac{2}{5\times 3-2\times 2}&\frac{5}{5\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{2}{11}\\-\frac{2}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 17-\frac{2}{11}\times 3\\-\frac{2}{11}\times 17+\frac{5}{11}\times 3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{45}{11}\\-\frac{19}{11}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{45}{11},y=-\frac{19}{11}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+2y=17,2x+3y=3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 5x+2\times 2y=2\times 17,5\times 2x+5\times 3y=5\times 3
5x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
10x+4y=34,10x+15y=15
సరళీకృతం చేయండి.
10x-10x+4y-15y=34-15
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 10x+15y=15ని 10x+4y=34 నుండి వ్యవకలనం చేయండి.
4y-15y=34-15
-10xకు 10xని కూడండి. 10x మరియు -10x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-11y=34-15
-15yకు 4yని కూడండి.
-11y=19
-15కు 34ని కూడండి.
y=-\frac{19}{11}
రెండు వైపులా -11తో భాగించండి.
2x+3\left(-\frac{19}{11}\right)=3
2x+3y=3లో yను -\frac{19}{11} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x-\frac{57}{11}=3
3 సార్లు -\frac{19}{11}ని గుణించండి.
2x=\frac{90}{11}
సమీకరణం యొక్క రెండు వైపులా \frac{57}{11}ని కూడండి.
x=\frac{45}{11}
రెండు వైపులా 2తో భాగించండి.
x=\frac{45}{11},y=-\frac{19}{11}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.