x, yని పరిష్కరించండి
x=2
y=-4
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
4x+y=4,-3x-6y=18
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4x+y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
4x=-y+4
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{4}\left(-y+4\right)
రెండు వైపులా 4తో భాగించండి.
x=-\frac{1}{4}y+1
\frac{1}{4} సార్లు -y+4ని గుణించండి.
-3\left(-\frac{1}{4}y+1\right)-6y=18
మరొక సమీకరణములో xను -\frac{y}{4}+1 స్థానంలో ప్రతిక్షేపించండి, -3x-6y=18.
\frac{3}{4}y-3-6y=18
-3 సార్లు -\frac{y}{4}+1ని గుణించండి.
-\frac{21}{4}y-3=18
-6yకు \frac{3y}{4}ని కూడండి.
-\frac{21}{4}y=21
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
y=-4
సమీకరణము యొక్క రెండు వైపులా -\frac{21}{4}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{4}\left(-4\right)+1
x=-\frac{1}{4}y+1లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1+1
-\frac{1}{4} సార్లు -4ని గుణించండి.
x=2
1కు 1ని కూడండి.
x=2,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4x+y=4,-3x-6y=18
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\18\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-\left(-3\right)}&-\frac{1}{4\left(-6\right)-\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-\left(-3\right)}&\frac{4}{4\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{21}\\-\frac{1}{7}&-\frac{4}{21}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 4+\frac{1}{21}\times 18\\-\frac{1}{7}\times 4-\frac{4}{21}\times 18\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=-4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
4x+y=4,-3x-6y=18
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-3\times 4x-3y=-3\times 4,4\left(-3\right)x+4\left(-6\right)y=4\times 18
4x మరియు -3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
-12x-3y=-12,-12x-24y=72
సరళీకృతం చేయండి.
-12x+12x-3y+24y=-12-72
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -12x-24y=72ని -12x-3y=-12 నుండి వ్యవకలనం చేయండి.
-3y+24y=-12-72
12xకు -12xని కూడండి. -12x మరియు 12x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
21y=-12-72
24yకు -3yని కూడండి.
21y=-84
-72కు -12ని కూడండి.
y=-4
రెండు వైపులా 21తో భాగించండి.
-3x-6\left(-4\right)=18
-3x-6y=18లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-3x+24=18
-6 సార్లు -4ని గుణించండి.
-3x=-6
సమీకరణము యొక్క రెండు భాగాల నుండి 24ని వ్యవకలనం చేయండి.
x=2
రెండు వైపులా -3తో భాగించండి.
x=2,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}