మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

4x+2y=12,7x+18y=19
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4x+2y=12
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
4x=-2y+12
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{4}\left(-2y+12\right)
రెండు వైపులా 4తో భాగించండి.
x=-\frac{1}{2}y+3
\frac{1}{4} సార్లు -2y+12ని గుణించండి.
7\left(-\frac{1}{2}y+3\right)+18y=19
మరొక సమీకరణములో xను -\frac{y}{2}+3 స్థానంలో ప్రతిక్షేపించండి, 7x+18y=19.
-\frac{7}{2}y+21+18y=19
7 సార్లు -\frac{y}{2}+3ని గుణించండి.
\frac{29}{2}y+21=19
18yకు -\frac{7y}{2}ని కూడండి.
\frac{29}{2}y=-2
సమీకరణము యొక్క రెండు భాగాల నుండి 21ని వ్యవకలనం చేయండి.
y=-\frac{4}{29}
సమీకరణము యొక్క రెండు వైపులా \frac{29}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{2}\left(-\frac{4}{29}\right)+3
x=-\frac{1}{2}y+3లో yను -\frac{4}{29} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{2}{29}+3
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{2} సార్లు -\frac{4}{29}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{89}{29}
\frac{2}{29}కు 3ని కూడండి.
x=\frac{89}{29},y=-\frac{4}{29}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4x+2y=12,7x+18y=19
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&2\\7&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\19\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}4&2\\7&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
\left(\begin{matrix}4&2\\7&18\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{4\times 18-2\times 7}&-\frac{2}{4\times 18-2\times 7}\\-\frac{7}{4\times 18-2\times 7}&\frac{4}{4\times 18-2\times 7}\end{matrix}\right)\left(\begin{matrix}12\\19\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{29}&-\frac{1}{29}\\-\frac{7}{58}&\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}12\\19\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{29}\times 12-\frac{1}{29}\times 19\\-\frac{7}{58}\times 12+\frac{2}{29}\times 19\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{89}{29}\\-\frac{4}{29}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{89}{29},y=-\frac{4}{29}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
4x+2y=12,7x+18y=19
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 4x+7\times 2y=7\times 12,4\times 7x+4\times 18y=4\times 19
4x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
28x+14y=84,28x+72y=76
సరళీకృతం చేయండి.
28x-28x+14y-72y=84-76
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 28x+72y=76ని 28x+14y=84 నుండి వ్యవకలనం చేయండి.
14y-72y=84-76
-28xకు 28xని కూడండి. 28x మరియు -28x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-58y=84-76
-72yకు 14yని కూడండి.
-58y=8
-76కు 84ని కూడండి.
y=-\frac{4}{29}
రెండు వైపులా -58తో భాగించండి.
7x+18\left(-\frac{4}{29}\right)=19
7x+18y=19లో yను -\frac{4}{29} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x-\frac{72}{29}=19
18 సార్లు -\frac{4}{29}ని గుణించండి.
7x=\frac{623}{29}
సమీకరణం యొక్క రెండు వైపులా \frac{72}{29}ని కూడండి.
x=\frac{89}{29}
రెండు వైపులా 7తో భాగించండి.
x=\frac{89}{29},y=-\frac{4}{29}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.