మెయిన్ కంటెంట్ కు వెళ్లండి
a, bని పరిష్కరించండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

4a+5b=9,2a-b=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4a+5b=9
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న aని వేరు చేయడం ద్వారా aని పరిష్కరించండి.
4a=-5b+9
సమీకరణము యొక్క రెండు భాగాల నుండి 5bని వ్యవకలనం చేయండి.
a=\frac{1}{4}\left(-5b+9\right)
రెండు వైపులా 4తో భాగించండి.
a=-\frac{5}{4}b+\frac{9}{4}
\frac{1}{4} సార్లు -5b+9ని గుణించండి.
2\left(-\frac{5}{4}b+\frac{9}{4}\right)-b=7
మరొక సమీకరణములో aను \frac{-5b+9}{4} స్థానంలో ప్రతిక్షేపించండి, 2a-b=7.
-\frac{5}{2}b+\frac{9}{2}-b=7
2 సార్లు \frac{-5b+9}{4}ని గుణించండి.
-\frac{7}{2}b+\frac{9}{2}=7
-bకు -\frac{5b}{2}ని కూడండి.
-\frac{7}{2}b=\frac{5}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{9}{2}ని వ్యవకలనం చేయండి.
b=-\frac{5}{7}
సమీకరణము యొక్క రెండు వైపులా -\frac{7}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
a=-\frac{5}{4}\left(-\frac{5}{7}\right)+\frac{9}{4}
a=-\frac{5}{4}b+\frac{9}{4}లో bను -\frac{5}{7} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
a=\frac{25}{28}+\frac{9}{4}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{5}{4} సార్లు -\frac{5}{7}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
a=\frac{22}{7}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{25}{28}కు \frac{9}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
a=\frac{22}{7},b=-\frac{5}{7}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4a+5b=9,2a-b=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&5\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}9\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}4&5\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
\left(\begin{matrix}4&5\\2&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\2&-1\end{matrix}\right))\left(\begin{matrix}9\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-5\times 2}&-\frac{5}{4\left(-1\right)-5\times 2}\\-\frac{2}{4\left(-1\right)-5\times 2}&\frac{4}{4\left(-1\right)-5\times 2}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}&\frac{5}{14}\\\frac{1}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}9\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{14}\times 9+\frac{5}{14}\times 7\\\frac{1}{7}\times 9-\frac{2}{7}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{22}{7}\\-\frac{5}{7}\end{matrix}\right)
అంకగణితము చేయండి.
a=\frac{22}{7},b=-\frac{5}{7}
a మరియు b మాత్రిక మూలకాలను విస్తరించండి.
4a+5b=9,2a-b=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 4a+2\times 5b=2\times 9,4\times 2a+4\left(-1\right)b=4\times 7
4a మరియు 2aని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
8a+10b=18,8a-4b=28
సరళీకృతం చేయండి.
8a-8a+10b+4b=18-28
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8a-4b=28ని 8a+10b=18 నుండి వ్యవకలనం చేయండి.
10b+4b=18-28
-8aకు 8aని కూడండి. 8a మరియు -8a విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
14b=18-28
4bకు 10bని కూడండి.
14b=-10
-28కు 18ని కూడండి.
b=-\frac{5}{7}
రెండు వైపులా 14తో భాగించండి.
2a-\left(-\frac{5}{7}\right)=7
2a-b=7లో bను -\frac{5}{7} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
2a=\frac{44}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{5}{7}ని వ్యవకలనం చేయండి.
a=\frac{22}{7}
రెండు వైపులా 2తో భాగించండి.
a=\frac{22}{7},b=-\frac{5}{7}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.