మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3y-6x=-3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 6xని వ్యవకలనం చేయండి.
2x+y=7
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా yని జోడించండి.
3y-6x=-3,y+2x=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3y-6x=-3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
3y=6x-3
సమీకరణం యొక్క రెండు వైపులా 6xని కూడండి.
y=\frac{1}{3}\left(6x-3\right)
రెండు వైపులా 3తో భాగించండి.
y=2x-1
\frac{1}{3} సార్లు 6x-3ని గుణించండి.
2x-1+2x=7
మరొక సమీకరణములో yను 2x-1 స్థానంలో ప్రతిక్షేపించండి, y+2x=7.
4x-1=7
2xకు 2xని కూడండి.
4x=8
సమీకరణం యొక్క రెండు వైపులా 1ని కూడండి.
x=2
రెండు వైపులా 4తో భాగించండి.
y=2\times 2-1
y=2x-1లో xను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=4-1
2 సార్లు 2ని గుణించండి.
y=3
4కు -1ని కూడండి.
y=3,x=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3y-6x=-3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 6xని వ్యవకలనం చేయండి.
2x+y=7
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా yని జోడించండి.
3y-6x=-3,y+2x=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
\left(\begin{matrix}3&-6\\1&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-6\right)}&-\frac{-6}{3\times 2-\left(-6\right)}\\-\frac{1}{3\times 2-\left(-6\right)}&\frac{3}{3\times 2-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{2}\\-\frac{1}{12}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-3\right)+\frac{1}{2}\times 7\\-\frac{1}{12}\left(-3\right)+\frac{1}{4}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
అంకగణితము చేయండి.
y=3,x=2
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
3y-6x=-3
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 6xని వ్యవకలనం చేయండి.
2x+y=7
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా yని జోడించండి.
3y-6x=-3,y+2x=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3y-6x=-3,3y+3\times 2x=3\times 7
3y మరియు yని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
3y-6x=-3,3y+6x=21
సరళీకృతం చేయండి.
3y-3y-6x-6x=-3-21
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3y+6x=21ని 3y-6x=-3 నుండి వ్యవకలనం చేయండి.
-6x-6x=-3-21
-3yకు 3yని కూడండి. 3y మరియు -3y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-12x=-3-21
-6xకు -6xని కూడండి.
-12x=-24
-21కు -3ని కూడండి.
x=2
రెండు వైపులా -12తో భాగించండి.
y+2\times 2=7
y+2x=7లో xను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y+4=7
2 సార్లు 2ని గుణించండి.
y=3
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
y=3,x=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.