x, yని పరిష్కరించండి
x=2
y=3
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x-y=3,7x+2y=20
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=y+3
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{3}\left(y+3\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{1}{3}y+1
\frac{1}{3} సార్లు y+3ని గుణించండి.
7\left(\frac{1}{3}y+1\right)+2y=20
మరొక సమీకరణములో xను \frac{y}{3}+1 స్థానంలో ప్రతిక్షేపించండి, 7x+2y=20.
\frac{7}{3}y+7+2y=20
7 సార్లు \frac{y}{3}+1ని గుణించండి.
\frac{13}{3}y+7=20
2yకు \frac{7y}{3}ని కూడండి.
\frac{13}{3}y=13
సమీకరణము యొక్క రెండు భాగాల నుండి 7ని వ్యవకలనం చేయండి.
y=3
సమీకరణము యొక్క రెండు వైపులా \frac{13}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{3}\times 3+1
x=\frac{1}{3}y+1లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1+1
\frac{1}{3} సార్లు 3ని గుణించండి.
x=2
1కు 1ని కూడండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-y=3,7x+2y=20
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-1\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\20\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3&-1\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
\left(\begin{matrix}3&-1\\7&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\7&2\end{matrix}\right))\left(\begin{matrix}3\\20\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-7\right)}&-\frac{-1}{3\times 2-\left(-7\right)}\\-\frac{7}{3\times 2-\left(-7\right)}&\frac{3}{3\times 2-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}3\\20\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{1}{13}\\-\frac{7}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}3\\20\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 3+\frac{1}{13}\times 20\\-\frac{7}{13}\times 3+\frac{3}{13}\times 20\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-y=3,7x+2y=20
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 3x+7\left(-1\right)y=7\times 3,3\times 7x+3\times 2y=3\times 20
3x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
21x-7y=21,21x+6y=60
సరళీకృతం చేయండి.
21x-21x-7y-6y=21-60
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 21x+6y=60ని 21x-7y=21 నుండి వ్యవకలనం చేయండి.
-7y-6y=21-60
-21xకు 21xని కూడండి. 21x మరియు -21x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-13y=21-60
-6yకు -7yని కూడండి.
-13y=-39
-60కు 21ని కూడండి.
y=3
రెండు వైపులా -13తో భాగించండి.
7x+2\times 3=20
7x+2y=20లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x+6=20
2 సార్లు 3ని గుణించండి.
7x=14
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
x=2
రెండు వైపులా 7తో భాగించండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}