మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-y+2=0,5x-2y+1=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-y+2=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x-y=-2
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
3x=y-2
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{3}\left(y-2\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{1}{3}y-\frac{2}{3}
\frac{1}{3} సార్లు y-2ని గుణించండి.
5\left(\frac{1}{3}y-\frac{2}{3}\right)-2y+1=0
మరొక సమీకరణములో xను \frac{-2+y}{3} స్థానంలో ప్రతిక్షేపించండి, 5x-2y+1=0.
\frac{5}{3}y-\frac{10}{3}-2y+1=0
5 సార్లు \frac{-2+y}{3}ని గుణించండి.
-\frac{1}{3}y-\frac{10}{3}+1=0
-2yకు \frac{5y}{3}ని కూడండి.
-\frac{1}{3}y-\frac{7}{3}=0
1కు -\frac{10}{3}ని కూడండి.
-\frac{1}{3}y=\frac{7}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{7}{3}ని కూడండి.
y=-7
రెండు వైపులా -3తో గుణించండి.
x=\frac{1}{3}\left(-7\right)-\frac{2}{3}
x=\frac{1}{3}y-\frac{2}{3}లో yను -7 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-7-2}{3}
\frac{1}{3} సార్లు -7ని గుణించండి.
x=-3
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{7}{3}కు -\frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-3,y=-7
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-y+2=0,5x-2y+1=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\right)}&-\frac{-1}{3\left(-2\right)-\left(-5\right)}\\-\frac{5}{3\left(-2\right)-\left(-5\right)}&\frac{3}{3\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-2\right)-\left(-1\right)\\5\left(-2\right)-3\left(-1\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-7\end{matrix}\right)
అంకగణితము చేయండి.
x=-3,y=-7
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-y+2=0,5x-2y+1=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\times 3x+5\left(-1\right)y+5\times 2=0,3\times 5x+3\left(-2\right)y+3=0
3x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
15x-5y+10=0,15x-6y+3=0
సరళీకృతం చేయండి.
15x-15x-5y+6y+10-3=0
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x-6y+3=0ని 15x-5y+10=0 నుండి వ్యవకలనం చేయండి.
-5y+6y+10-3=0
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
y+10-3=0
6yకు -5yని కూడండి.
y+7=0
-3కు 10ని కూడండి.
y=-7
సమీకరణము యొక్క రెండు భాగాల నుండి 7ని వ్యవకలనం చేయండి.
5x-2\left(-7\right)+1=0
5x-2y+1=0లో yను -7 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x+14+1=0
-2 సార్లు -7ని గుణించండి.
5x+15=0
1కు 14ని కూడండి.
5x=-15
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
x=-3
రెండు వైపులా 5తో భాగించండి.
x=-3,y=-7
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.