x, yని పరిష్కరించండి
x=2
y=3
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x-4y=-6,2x+4y=16
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-4y=-6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=4y-6
సమీకరణం యొక్క రెండు వైపులా 4yని కూడండి.
x=\frac{1}{3}\left(4y-6\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{4}{3}y-2
\frac{1}{3} సార్లు 4y-6ని గుణించండి.
2\left(\frac{4}{3}y-2\right)+4y=16
మరొక సమీకరణములో xను \frac{4y}{3}-2 స్థానంలో ప్రతిక్షేపించండి, 2x+4y=16.
\frac{8}{3}y-4+4y=16
2 సార్లు \frac{4y}{3}-2ని గుణించండి.
\frac{20}{3}y-4=16
4yకు \frac{8y}{3}ని కూడండి.
\frac{20}{3}y=20
సమీకరణం యొక్క రెండు వైపులా 4ని కూడండి.
y=3
సమీకరణము యొక్క రెండు వైపులా \frac{20}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{4}{3}\times 3-2
x=\frac{4}{3}y-2లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=4-2
\frac{4}{3} సార్లు 3ని గుణించండి.
x=2
4కు -2ని కూడండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-4y=-6,2x+4y=16
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\16\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-4\times 2\right)}&-\frac{-4}{3\times 4-\left(-4\times 2\right)}\\-\frac{2}{3\times 4-\left(-4\times 2\right)}&\frac{3}{3\times 4-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{1}{5}\times 16\\-\frac{1}{10}\left(-6\right)+\frac{3}{20}\times 16\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-4y=-6,2x+4y=16
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 3x+2\left(-4\right)y=2\left(-6\right),3\times 2x+3\times 4y=3\times 16
3x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
6x-8y=-12,6x+12y=48
సరళీకృతం చేయండి.
6x-6x-8y-12y=-12-48
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x+12y=48ని 6x-8y=-12 నుండి వ్యవకలనం చేయండి.
-8y-12y=-12-48
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-20y=-12-48
-12yకు -8yని కూడండి.
-20y=-60
-48కు -12ని కూడండి.
y=3
రెండు వైపులా -20తో భాగించండి.
2x+4\times 3=16
2x+4y=16లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x+12=16
4 సార్లు 3ని గుణించండి.
2x=4
సమీకరణము యొక్క రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి.
x=2
రెండు వైపులా 2తో భాగించండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}