మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+y=5,7x+y=6
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+y=5
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-y+5
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-y+5\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{1}{3}y+\frac{5}{3}
\frac{1}{3} సార్లు -y+5ని గుణించండి.
7\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=6
మరొక సమీకరణములో xను \frac{-y+5}{3} స్థానంలో ప్రతిక్షేపించండి, 7x+y=6.
-\frac{7}{3}y+\frac{35}{3}+y=6
7 సార్లు \frac{-y+5}{3}ని గుణించండి.
-\frac{4}{3}y+\frac{35}{3}=6
yకు -\frac{7y}{3}ని కూడండి.
-\frac{4}{3}y=-\frac{17}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{35}{3}ని వ్యవకలనం చేయండి.
y=\frac{17}{4}
సమీకరణము యొక్క రెండు వైపులా -\frac{4}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{3}\times \frac{17}{4}+\frac{5}{3}
x=-\frac{1}{3}y+\frac{5}{3}లో yను \frac{17}{4} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{17}{12}+\frac{5}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{3} సార్లు \frac{17}{4}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{1}{4}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{17}{12}కు \frac{5}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{1}{4},y=\frac{17}{4}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+y=5,7x+y=6
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
\left(\begin{matrix}3&1\\7&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-7}&-\frac{1}{3-7}\\-\frac{7}{3-7}&\frac{3}{3-7}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{7}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 5+\frac{1}{4}\times 6\\\frac{7}{4}\times 5-\frac{3}{4}\times 6\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\\frac{17}{4}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{1}{4},y=\frac{17}{4}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+y=5,7x+y=6
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x-7x+y-y=5-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 7x+y=6ని 3x+y=5 నుండి వ్యవకలనం చేయండి.
3x-7x=5-6
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-4x=5-6
-7xకు 3xని కూడండి.
-4x=-1
-6కు 5ని కూడండి.
x=\frac{1}{4}
రెండు వైపులా -4తో భాగించండి.
7\times \frac{1}{4}+y=6
7x+y=6లో xను \frac{1}{4} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
\frac{7}{4}+y=6
7 సార్లు \frac{1}{4}ని గుణించండి.
y=\frac{17}{4}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{7}{4}ని వ్యవకలనం చేయండి.
x=\frac{1}{4},y=\frac{17}{4}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.