మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+y=-1,2x+3y=18
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+y=-1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-y-1
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-y-1\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{1}{3}y-\frac{1}{3}
\frac{1}{3} సార్లు -y-1ని గుణించండి.
2\left(-\frac{1}{3}y-\frac{1}{3}\right)+3y=18
మరొక సమీకరణములో xను \frac{-y-1}{3} స్థానంలో ప్రతిక్షేపించండి, 2x+3y=18.
-\frac{2}{3}y-\frac{2}{3}+3y=18
2 సార్లు \frac{-y-1}{3}ని గుణించండి.
\frac{7}{3}y-\frac{2}{3}=18
3yకు -\frac{2y}{3}ని కూడండి.
\frac{7}{3}y=\frac{56}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{2}{3}ని కూడండి.
y=8
సమీకరణము యొక్క రెండు వైపులా \frac{7}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{3}\times 8-\frac{1}{3}
x=-\frac{1}{3}y-\frac{1}{3}లో yను 8 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-8-1}{3}
-\frac{1}{3} సార్లు 8ని గుణించండి.
x=-3
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{8}{3}కు -\frac{1}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-3,y=8
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+y=-1,2x+3y=18
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\18\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&1\\2&3\end{matrix}\right))\left(\begin{matrix}3&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\18\end{matrix}\right)
\left(\begin{matrix}3&1\\2&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\18\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&3\end{matrix}\right))\left(\begin{matrix}-1\\18\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-2}&-\frac{1}{3\times 3-2}\\-\frac{2}{3\times 3-2}&\frac{3}{3\times 3-2}\end{matrix}\right)\left(\begin{matrix}-1\\18\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{1}{7}\\-\frac{2}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}-1\\18\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-1\right)-\frac{1}{7}\times 18\\-\frac{2}{7}\left(-1\right)+\frac{3}{7}\times 18\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\8\end{matrix}\right)
అంకగణితము చేయండి.
x=-3,y=8
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+y=-1,2x+3y=18
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 3x+2y=2\left(-1\right),3\times 2x+3\times 3y=3\times 18
3x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
6x+2y=-2,6x+9y=54
సరళీకృతం చేయండి.
6x-6x+2y-9y=-2-54
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x+9y=54ని 6x+2y=-2 నుండి వ్యవకలనం చేయండి.
2y-9y=-2-54
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-7y=-2-54
-9yకు 2yని కూడండి.
-7y=-56
-54కు -2ని కూడండి.
y=8
రెండు వైపులా -7తో భాగించండి.
2x+3\times 8=18
2x+3y=18లో yను 8 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x+24=18
3 సార్లు 8ని గుణించండి.
2x=-6
సమీకరణము యొక్క రెండు భాగాల నుండి 24ని వ్యవకలనం చేయండి.
x=-3
రెండు వైపులా 2తో భాగించండి.
x=-3,y=8
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.