మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+7y=13,5x-4y=6
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+7y=13
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-7y+13
సమీకరణము యొక్క రెండు భాగాల నుండి 7yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-7y+13\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{7}{3}y+\frac{13}{3}
\frac{1}{3} సార్లు -7y+13ని గుణించండి.
5\left(-\frac{7}{3}y+\frac{13}{3}\right)-4y=6
మరొక సమీకరణములో xను \frac{-7y+13}{3} స్థానంలో ప్రతిక్షేపించండి, 5x-4y=6.
-\frac{35}{3}y+\frac{65}{3}-4y=6
5 సార్లు \frac{-7y+13}{3}ని గుణించండి.
-\frac{47}{3}y+\frac{65}{3}=6
-4yకు -\frac{35y}{3}ని కూడండి.
-\frac{47}{3}y=-\frac{47}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{65}{3}ని వ్యవకలనం చేయండి.
y=1
సమీకరణము యొక్క రెండు వైపులా -\frac{47}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{-7+13}{3}
x=-\frac{7}{3}y+\frac{13}{3}లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{7}{3}కు \frac{13}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+7y=13,5x-4y=6
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\6\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}3&7\\5&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
\left(\begin{matrix}3&7\\5&-4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&7\\5&-4\end{matrix}\right))\left(\begin{matrix}13\\6\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3\left(-4\right)-7\times 5}&-\frac{7}{3\left(-4\right)-7\times 5}\\-\frac{5}{3\left(-4\right)-7\times 5}&\frac{3}{3\left(-4\right)-7\times 5}\end{matrix}\right)\left(\begin{matrix}13\\6\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{47}&\frac{7}{47}\\\frac{5}{47}&-\frac{3}{47}\end{matrix}\right)\left(\begin{matrix}13\\6\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{47}\times 13+\frac{7}{47}\times 6\\\frac{5}{47}\times 13-\frac{3}{47}\times 6\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+7y=13,5x-4y=6
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\times 3x+5\times 7y=5\times 13,3\times 5x+3\left(-4\right)y=3\times 6
3x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
15x+35y=65,15x-12y=18
సరళీకృతం చేయండి.
15x-15x+35y+12y=65-18
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x-12y=18ని 15x+35y=65 నుండి వ్యవకలనం చేయండి.
35y+12y=65-18
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
47y=65-18
12yకు 35yని కూడండి.
47y=47
-18కు 65ని కూడండి.
y=1
రెండు వైపులా 47తో భాగించండి.
5x-4=6
5x-4y=6లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x=10
సమీకరణం యొక్క రెండు వైపులా 4ని కూడండి.
x=2
రెండు వైపులా 5తో భాగించండి.
x=2,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.