మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+4y=3,8x+7y=14
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+4y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-4y+3
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-4y+3\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{4}{3}y+1
\frac{1}{3} సార్లు -4y+3ని గుణించండి.
8\left(-\frac{4}{3}y+1\right)+7y=14
మరొక సమీకరణములో xను -\frac{4y}{3}+1 స్థానంలో ప్రతిక్షేపించండి, 8x+7y=14.
-\frac{32}{3}y+8+7y=14
8 సార్లు -\frac{4y}{3}+1ని గుణించండి.
-\frac{11}{3}y+8=14
7yకు -\frac{32y}{3}ని కూడండి.
-\frac{11}{3}y=6
సమీకరణము యొక్క రెండు భాగాల నుండి 8ని వ్యవకలనం చేయండి.
y=-\frac{18}{11}
సమీకరణము యొక్క రెండు వైపులా -\frac{11}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{4}{3}\left(-\frac{18}{11}\right)+1
x=-\frac{4}{3}y+1లో yను -\frac{18}{11} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{24}{11}+1
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{4}{3} సార్లు -\frac{18}{11}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{35}{11}
\frac{24}{11}కు 1ని కూడండి.
x=\frac{35}{11},y=-\frac{18}{11}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+4y=3,8x+7y=14
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&4\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\14\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3&4\\8&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
\left(\begin{matrix}3&4\\8&7\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\8&7\end{matrix}\right))\left(\begin{matrix}3\\14\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3\times 7-4\times 8}&-\frac{4}{3\times 7-4\times 8}\\-\frac{8}{3\times 7-4\times 8}&\frac{3}{3\times 7-4\times 8}\end{matrix}\right)\left(\begin{matrix}3\\14\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{11}&\frac{4}{11}\\\frac{8}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}3\\14\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{11}\times 3+\frac{4}{11}\times 14\\\frac{8}{11}\times 3-\frac{3}{11}\times 14\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{11}\\-\frac{18}{11}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{35}{11},y=-\frac{18}{11}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+4y=3,8x+7y=14
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
8\times 3x+8\times 4y=8\times 3,3\times 8x+3\times 7y=3\times 14
3x మరియు 8xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 8తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
24x+32y=24,24x+21y=42
సరళీకృతం చేయండి.
24x-24x+32y-21y=24-42
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 24x+21y=42ని 24x+32y=24 నుండి వ్యవకలనం చేయండి.
32y-21y=24-42
-24xకు 24xని కూడండి. 24x మరియు -24x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
11y=24-42
-21yకు 32yని కూడండి.
11y=-18
-42కు 24ని కూడండి.
y=-\frac{18}{11}
రెండు వైపులా 11తో భాగించండి.
8x+7\left(-\frac{18}{11}\right)=14
8x+7y=14లో yను -\frac{18}{11} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
8x-\frac{126}{11}=14
7 సార్లు -\frac{18}{11}ని గుణించండి.
8x=\frac{280}{11}
సమీకరణం యొక్క రెండు వైపులా \frac{126}{11}ని కూడండి.
x=\frac{35}{11}
రెండు వైపులా 8తో భాగించండి.
x=\frac{35}{11},y=-\frac{18}{11}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.