మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-5x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
3x+4y=253,-5x+y=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+4y=253
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-4y+253
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-4y+253\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{4}{3}y+\frac{253}{3}
\frac{1}{3} సార్లు -4y+253ని గుణించండి.
-5\left(-\frac{4}{3}y+\frac{253}{3}\right)+y=0
మరొక సమీకరణములో xను \frac{-4y+253}{3} స్థానంలో ప్రతిక్షేపించండి, -5x+y=0.
\frac{20}{3}y-\frac{1265}{3}+y=0
-5 సార్లు \frac{-4y+253}{3}ని గుణించండి.
\frac{23}{3}y-\frac{1265}{3}=0
yకు \frac{20y}{3}ని కూడండి.
\frac{23}{3}y=\frac{1265}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{1265}{3}ని కూడండి.
y=55
సమీకరణము యొక్క రెండు వైపులా \frac{23}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{4}{3}\times 55+\frac{253}{3}
x=-\frac{4}{3}y+\frac{253}{3}లో yను 55 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-220+253}{3}
-\frac{4}{3} సార్లు 55ని గుణించండి.
x=11
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{220}{3}కు \frac{253}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=11,y=55
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-5x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
3x+4y=253,-5x+y=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}253\\0\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}3&4\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
\left(\begin{matrix}3&4\\-5&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\-5&1\end{matrix}\right))\left(\begin{matrix}253\\0\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\left(-5\right)}&-\frac{4}{3-4\left(-5\right)}\\-\frac{-5}{3-4\left(-5\right)}&\frac{3}{3-4\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}&-\frac{4}{23}\\\frac{5}{23}&\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}253\\0\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{23}\times 253\\\frac{5}{23}\times 253\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\55\end{matrix}\right)
అంకగణితము చేయండి.
x=11,y=55
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
y-5x=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
3x+4y=253,-5x+y=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5\times 3x-5\times 4y=-5\times 253,3\left(-5\right)x+3y=0
3x మరియు -5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
-15x-20y=-1265,-15x+3y=0
సరళీకృతం చేయండి.
-15x+15x-20y-3y=-1265
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -15x+3y=0ని -15x-20y=-1265 నుండి వ్యవకలనం చేయండి.
-20y-3y=-1265
15xకు -15xని కూడండి. -15x మరియు 15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-23y=-1265
-3yకు -20yని కూడండి.
y=55
రెండు వైపులా -23తో భాగించండి.
-5x+55=0
-5x+y=0లో yను 55 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-5x=-55
సమీకరణము యొక్క రెండు భాగాల నుండి 55ని వ్యవకలనం చేయండి.
x=11
రెండు వైపులా -5తో భాగించండి.
x=11,y=55
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.