x, yని పరిష్కరించండి
x = -\frac{135}{19} = -7\frac{2}{19} \approx -7.105263158
y = \frac{307}{19} = 16\frac{3}{19} \approx 16.157894737
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x+2y=11,4x+9y=117
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+2y=11
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-2y+11
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-2y+11\right)
రెండు వైపులా 3తో భాగించండి.
x=-\frac{2}{3}y+\frac{11}{3}
\frac{1}{3} సార్లు -2y+11ని గుణించండి.
4\left(-\frac{2}{3}y+\frac{11}{3}\right)+9y=117
మరొక సమీకరణములో xను \frac{-2y+11}{3} స్థానంలో ప్రతిక్షేపించండి, 4x+9y=117.
-\frac{8}{3}y+\frac{44}{3}+9y=117
4 సార్లు \frac{-2y+11}{3}ని గుణించండి.
\frac{19}{3}y+\frac{44}{3}=117
9yకు -\frac{8y}{3}ని కూడండి.
\frac{19}{3}y=\frac{307}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{44}{3}ని వ్యవకలనం చేయండి.
y=\frac{307}{19}
సమీకరణము యొక్క రెండు వైపులా \frac{19}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{3}\times \frac{307}{19}+\frac{11}{3}
x=-\frac{2}{3}y+\frac{11}{3}లో yను \frac{307}{19} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{614}{57}+\frac{11}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{2}{3} సార్లు \frac{307}{19}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{135}{19}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{614}{57}కు \frac{11}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{135}{19},y=\frac{307}{19}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+2y=11,4x+9y=117
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\117\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}3&2\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
\left(\begin{matrix}3&2\\4&9\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\4&9\end{matrix}\right))\left(\begin{matrix}11\\117\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{3\times 9-2\times 4}&-\frac{2}{3\times 9-2\times 4}\\-\frac{4}{3\times 9-2\times 4}&\frac{3}{3\times 9-2\times 4}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}&-\frac{2}{19}\\-\frac{4}{19}&\frac{3}{19}\end{matrix}\right)\left(\begin{matrix}11\\117\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{19}\times 11-\frac{2}{19}\times 117\\-\frac{4}{19}\times 11+\frac{3}{19}\times 117\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{135}{19}\\\frac{307}{19}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{135}{19},y=\frac{307}{19}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+2y=11,4x+9y=117
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 3x+4\times 2y=4\times 11,3\times 4x+3\times 9y=3\times 117
3x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
12x+8y=44,12x+27y=351
సరళీకృతం చేయండి.
12x-12x+8y-27y=44-351
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 12x+27y=351ని 12x+8y=44 నుండి వ్యవకలనం చేయండి.
8y-27y=44-351
-12xకు 12xని కూడండి. 12x మరియు -12x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-19y=44-351
-27yకు 8yని కూడండి.
-19y=-307
-351కు 44ని కూడండి.
y=\frac{307}{19}
రెండు వైపులా -19తో భాగించండి.
4x+9\times \frac{307}{19}=117
4x+9y=117లో yను \frac{307}{19} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x+\frac{2763}{19}=117
9 సార్లు \frac{307}{19}ని గుణించండి.
4x=-\frac{540}{19}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2763}{19}ని వ్యవకలనం చేయండి.
x=-\frac{135}{19}
రెండు వైపులా 4తో భాగించండి.
x=-\frac{135}{19},y=\frac{307}{19}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}