మెయిన్ కంటెంట్ కు వెళ్లండి
a, bని పరిష్కరించండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3a+b=-3,2a-b=-1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3a+b=-3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న aని వేరు చేయడం ద్వారా aని పరిష్కరించండి.
3a=-b-3
సమీకరణము యొక్క రెండు భాగాల నుండి bని వ్యవకలనం చేయండి.
a=\frac{1}{3}\left(-b-3\right)
రెండు వైపులా 3తో భాగించండి.
a=-\frac{1}{3}b-1
\frac{1}{3} సార్లు -b-3ని గుణించండి.
2\left(-\frac{1}{3}b-1\right)-b=-1
మరొక సమీకరణములో aను -\frac{b}{3}-1 స్థానంలో ప్రతిక్షేపించండి, 2a-b=-1.
-\frac{2}{3}b-2-b=-1
2 సార్లు -\frac{b}{3}-1ని గుణించండి.
-\frac{5}{3}b-2=-1
-bకు -\frac{2b}{3}ని కూడండి.
-\frac{5}{3}b=1
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
b=-\frac{3}{5}
సమీకరణము యొక్క రెండు వైపులా -\frac{5}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
a=-\frac{1}{3}\left(-\frac{3}{5}\right)-1
a=-\frac{1}{3}b-1లో bను -\frac{3}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
a=\frac{1}{5}-1
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{3} సార్లు -\frac{3}{5}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
a=-\frac{4}{5}
\frac{1}{5}కు -1ని కూడండి.
a=-\frac{4}{5},b=-\frac{3}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3a+b=-3,2a-b=-1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}-3\\-1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{1}{3\left(-1\right)-2}\\-\frac{2}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}-3\\-1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-3\right)+\frac{1}{5}\left(-1\right)\\\frac{2}{5}\left(-3\right)-\frac{3}{5}\left(-1\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{5}\\-\frac{3}{5}\end{matrix}\right)
అంకగణితము చేయండి.
a=-\frac{4}{5},b=-\frac{3}{5}
a మరియు b మాత్రిక మూలకాలను విస్తరించండి.
3a+b=-3,2a-b=-1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 3a+2b=2\left(-3\right),3\times 2a+3\left(-1\right)b=3\left(-1\right)
3a మరియు 2aని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
6a+2b=-6,6a-3b=-3
సరళీకృతం చేయండి.
6a-6a+2b+3b=-6+3
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6a-3b=-3ని 6a+2b=-6 నుండి వ్యవకలనం చేయండి.
2b+3b=-6+3
-6aకు 6aని కూడండి. 6a మరియు -6a విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
5b=-6+3
3bకు 2bని కూడండి.
5b=-3
3కు -6ని కూడండి.
b=-\frac{3}{5}
రెండు వైపులా 5తో భాగించండి.
2a-\left(-\frac{3}{5}\right)=-1
2a-b=-1లో bను -\frac{3}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
2a=-\frac{8}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{5}ని వ్యవకలనం చేయండి.
a=-\frac{4}{5}
రెండు వైపులా 2తో భాగించండి.
a=-\frac{4}{5},b=-\frac{3}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.