x, yని పరిష్కరించండి
x=-1
y = \frac{15}{14} = 1\frac{1}{14} \approx 1.071428571
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{3}{2}x+\frac{7}{3}y=1,\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
\frac{3}{2}x+\frac{7}{3}y=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
\frac{3}{2}x=-\frac{7}{3}y+1
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{7y}{3}ని వ్యవకలనం చేయండి.
x=\frac{2}{3}\left(-\frac{7}{3}y+1\right)
సమీకరణము యొక్క రెండు వైపులా \frac{3}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{14}{9}y+\frac{2}{3}
\frac{2}{3} సార్లు -\frac{7y}{3}+1ని గుణించండి.
\frac{1}{4}\left(-\frac{14}{9}y+\frac{2}{3}\right)-\frac{7}{6}y=-\frac{3}{2}
మరొక సమీకరణములో xను -\frac{14y}{9}+\frac{2}{3} స్థానంలో ప్రతిక్షేపించండి, \frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}.
-\frac{7}{18}y+\frac{1}{6}-\frac{7}{6}y=-\frac{3}{2}
\frac{1}{4} సార్లు -\frac{14y}{9}+\frac{2}{3}ని గుణించండి.
-\frac{14}{9}y+\frac{1}{6}=-\frac{3}{2}
-\frac{7y}{6}కు -\frac{7y}{18}ని కూడండి.
-\frac{14}{9}y=-\frac{5}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{6}ని వ్యవకలనం చేయండి.
y=\frac{15}{14}
సమీకరణము యొక్క రెండు వైపులా -\frac{14}{9}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{14}{9}\times \frac{15}{14}+\frac{2}{3}
x=-\frac{14}{9}y+\frac{2}{3}లో yను \frac{15}{14} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-5+2}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{14}{9} సార్లు \frac{15}{14}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{5}{3}కు \frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-1,y=\frac{15}{14}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\frac{3}{2}x+\frac{7}{3}y=1,\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{3}{2}&\frac{7}{3}\\\frac{1}{4}&-\frac{7}{6}\end{matrix}\right))\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{7}{6}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}&-\frac{\frac{7}{3}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}\\-\frac{\frac{1}{4}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}&\frac{\frac{3}{2}}{\frac{3}{2}\left(-\frac{7}{6}\right)-\frac{7}{3}\times \frac{1}{4}}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&1\\\frac{3}{28}&-\frac{9}{14}\end{matrix}\right)\left(\begin{matrix}1\\-\frac{3}{2}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1-3}{2}\\\frac{3}{28}-\frac{9}{14}\left(-\frac{3}{2}\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{15}{14}\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=\frac{15}{14}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
\frac{3}{2}x+\frac{7}{3}y=1,\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{1}{4}\times \frac{3}{2}x+\frac{1}{4}\times \frac{7}{3}y=\frac{1}{4},\frac{3}{2}\times \frac{1}{4}x+\frac{3}{2}\left(-\frac{7}{6}\right)y=\frac{3}{2}\left(-\frac{3}{2}\right)
\frac{3x}{2} మరియు \frac{x}{4}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను \frac{1}{4}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను \frac{3}{2}తో గుణించండి.
\frac{3}{8}x+\frac{7}{12}y=\frac{1}{4},\frac{3}{8}x-\frac{7}{4}y=-\frac{9}{4}
సరళీకృతం చేయండి.
\frac{3}{8}x-\frac{3}{8}x+\frac{7}{12}y+\frac{7}{4}y=\frac{1+9}{4}
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{3}{8}x-\frac{7}{4}y=-\frac{9}{4}ని \frac{3}{8}x+\frac{7}{12}y=\frac{1}{4} నుండి వ్యవకలనం చేయండి.
\frac{7}{12}y+\frac{7}{4}y=\frac{1+9}{4}
-\frac{3x}{8}కు \frac{3x}{8}ని కూడండి. \frac{3x}{8} మరియు -\frac{3x}{8} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
\frac{7}{3}y=\frac{1+9}{4}
\frac{7y}{4}కు \frac{7y}{12}ని కూడండి.
\frac{7}{3}y=\frac{5}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{9}{4}కు \frac{1}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=\frac{15}{14}
సమీకరణము యొక్క రెండు వైపులా \frac{7}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
\frac{1}{4}x-\frac{7}{6}\times \frac{15}{14}=-\frac{3}{2}
\frac{1}{4}x-\frac{7}{6}y=-\frac{3}{2}లో yను \frac{15}{14} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
\frac{1}{4}x-\frac{5}{4}=-\frac{3}{2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{7}{6} సార్లు \frac{15}{14}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
\frac{1}{4}x=-\frac{1}{4}
సమీకరణం యొక్క రెండు వైపులా \frac{5}{4}ని కూడండి.
x=-1
రెండు వైపులా 4తో గుణించండి.
x=-1,y=\frac{15}{14}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}