మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x-y=6,4x+3y=-3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=y+6
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{2}\left(y+6\right)
రెండు వైపులా 2తో భాగించండి.
x=\frac{1}{2}y+3
\frac{1}{2} సార్లు y+6ని గుణించండి.
4\left(\frac{1}{2}y+3\right)+3y=-3
మరొక సమీకరణములో xను \frac{y}{2}+3 స్థానంలో ప్రతిక్షేపించండి, 4x+3y=-3.
2y+12+3y=-3
4 సార్లు \frac{y}{2}+3ని గుణించండి.
5y+12=-3
3yకు 2yని కూడండి.
5y=-15
సమీకరణము యొక్క రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి.
y=-3
రెండు వైపులా 5తో భాగించండి.
x=\frac{1}{2}\left(-3\right)+3
x=\frac{1}{2}y+3లో yను -3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{3}{2}+3
\frac{1}{2} సార్లు -3ని గుణించండి.
x=\frac{3}{2}
-\frac{3}{2}కు 3ని కూడండి.
x=\frac{3}{2},y=-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-y=6,4x+3y=-3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}2&-1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
\left(\begin{matrix}2&-1\\4&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-\left(-4\right)}&-\frac{-1}{2\times 3-\left(-4\right)}\\-\frac{4}{2\times 3-\left(-4\right)}&\frac{2}{2\times 3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}&\frac{1}{10}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{10}\times 6+\frac{1}{10}\left(-3\right)\\-\frac{2}{5}\times 6+\frac{1}{5}\left(-3\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-3\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{3}{2},y=-3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-y=6,4x+3y=-3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 2x+4\left(-1\right)y=4\times 6,2\times 4x+2\times 3y=2\left(-3\right)
2x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
8x-4y=24,8x+6y=-6
సరళీకృతం చేయండి.
8x-8x-4y-6y=24+6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8x+6y=-6ని 8x-4y=24 నుండి వ్యవకలనం చేయండి.
-4y-6y=24+6
-8xకు 8xని కూడండి. 8x మరియు -8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-10y=24+6
-6yకు -4yని కూడండి.
-10y=30
6కు 24ని కూడండి.
y=-3
రెండు వైపులా -10తో భాగించండి.
4x+3\left(-3\right)=-3
4x+3y=-3లో yను -3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x-9=-3
3 సార్లు -3ని గుణించండి.
4x=6
సమీకరణం యొక్క రెండు వైపులా 9ని కూడండి.
x=\frac{3}{2}
రెండు వైపులా 4తో భాగించండి.
x=\frac{3}{2},y=-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.