మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x-y=6,3x-2y=4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=y+6
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{2}\left(y+6\right)
రెండు వైపులా 2తో భాగించండి.
x=\frac{1}{2}y+3
\frac{1}{2} సార్లు y+6ని గుణించండి.
3\left(\frac{1}{2}y+3\right)-2y=4
మరొక సమీకరణములో xను \frac{y}{2}+3 స్థానంలో ప్రతిక్షేపించండి, 3x-2y=4.
\frac{3}{2}y+9-2y=4
3 సార్లు \frac{y}{2}+3ని గుణించండి.
-\frac{1}{2}y+9=4
-2yకు \frac{3y}{2}ని కూడండి.
-\frac{1}{2}y=-5
సమీకరణము యొక్క రెండు భాగాల నుండి 9ని వ్యవకలనం చేయండి.
y=10
రెండు వైపులా -2తో గుణించండి.
x=\frac{1}{2}\times 10+3
x=\frac{1}{2}y+3లో yను 10 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=5+3
\frac{1}{2} సార్లు 10ని గుణించండి.
x=8
5కు 3ని కూడండి.
x=8,y=10
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-y=6,3x-2y=4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\right)}&-\frac{-1}{2\left(-2\right)-\left(-3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\right)}&\frac{2}{2\left(-2\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\3&-2\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 6-4\\3\times 6-2\times 4\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\10\end{matrix}\right)
అంకగణితము చేయండి.
x=8,y=10
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-y=6,3x-2y=4
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 2x+3\left(-1\right)y=3\times 6,2\times 3x+2\left(-2\right)y=2\times 4
2x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
6x-3y=18,6x-4y=8
సరళీకృతం చేయండి.
6x-6x-3y+4y=18-8
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x-4y=8ని 6x-3y=18 నుండి వ్యవకలనం చేయండి.
-3y+4y=18-8
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
y=18-8
4yకు -3yని కూడండి.
y=10
-8కు 18ని కూడండి.
3x-2\times 10=4
3x-2y=4లో yను 10 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x-20=4
-2 సార్లు 10ని గుణించండి.
3x=24
సమీకరణం యొక్క రెండు వైపులా 20ని కూడండి.
x=8
రెండు వైపులా 3తో భాగించండి.
x=8,y=10
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.