x, yని పరిష్కరించండి
x=6
y=-1
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2x-y=13,-4x-6y=-18
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-y=13
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=y+13
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{2}\left(y+13\right)
రెండు వైపులా 2తో భాగించండి.
x=\frac{1}{2}y+\frac{13}{2}
\frac{1}{2} సార్లు y+13ని గుణించండి.
-4\left(\frac{1}{2}y+\frac{13}{2}\right)-6y=-18
మరొక సమీకరణములో xను \frac{13+y}{2} స్థానంలో ప్రతిక్షేపించండి, -4x-6y=-18.
-2y-26-6y=-18
-4 సార్లు \frac{13+y}{2}ని గుణించండి.
-8y-26=-18
-6yకు -2yని కూడండి.
-8y=8
సమీకరణం యొక్క రెండు వైపులా 26ని కూడండి.
y=-1
రెండు వైపులా -8తో భాగించండి.
x=\frac{1}{2}\left(-1\right)+\frac{13}{2}
x=\frac{1}{2}y+\frac{13}{2}లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-1+13}{2}
\frac{1}{2} సార్లు -1ని గుణించండి.
x=6
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{1}{2}కు \frac{13}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=6,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-y=13,-4x-6y=-18
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-18\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}13\\-18\end{matrix}\right)
\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}13\\-18\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-4&-6\end{matrix}\right))\left(\begin{matrix}13\\-18\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{2\left(-6\right)-\left(-\left(-4\right)\right)}&-\frac{-1}{2\left(-6\right)-\left(-\left(-4\right)\right)}\\-\frac{-4}{2\left(-6\right)-\left(-\left(-4\right)\right)}&\frac{2}{2\left(-6\right)-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}13\\-18\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{16}\\-\frac{1}{4}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}13\\-18\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 13-\frac{1}{16}\left(-18\right)\\-\frac{1}{4}\times 13-\frac{1}{8}\left(-18\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
అంకగణితము చేయండి.
x=6,y=-1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-y=13,-4x-6y=-18
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-4\times 2x-4\left(-1\right)y=-4\times 13,2\left(-4\right)x+2\left(-6\right)y=2\left(-18\right)
2x మరియు -4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
-8x+4y=-52,-8x-12y=-36
సరళీకృతం చేయండి.
-8x+8x+4y+12y=-52+36
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -8x-12y=-36ని -8x+4y=-52 నుండి వ్యవకలనం చేయండి.
4y+12y=-52+36
8xకు -8xని కూడండి. -8x మరియు 8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
16y=-52+36
12yకు 4yని కూడండి.
16y=-16
36కు -52ని కూడండి.
y=-1
రెండు వైపులా 16తో భాగించండి.
-4x-6\left(-1\right)=-18
-4x-6y=-18లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-4x+6=-18
-6 సార్లు -1ని గుణించండి.
-4x=-24
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
x=6
రెండు వైపులా -4తో భాగించండి.
x=6,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}