మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x-6y=16,-x+2y=-4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-6y=16
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=6y+16
సమీకరణం యొక్క రెండు వైపులా 6yని కూడండి.
x=\frac{1}{2}\left(6y+16\right)
రెండు వైపులా 2తో భాగించండి.
x=3y+8
\frac{1}{2} సార్లు 6y+16ని గుణించండి.
-\left(3y+8\right)+2y=-4
మరొక సమీకరణములో xను 3y+8 స్థానంలో ప్రతిక్షేపించండి, -x+2y=-4.
-3y-8+2y=-4
-1 సార్లు 3y+8ని గుణించండి.
-y-8=-4
2yకు -3yని కూడండి.
-y=4
సమీకరణం యొక్క రెండు వైపులా 8ని కూడండి.
y=-4
రెండు వైపులా -1తో భాగించండి.
x=3\left(-4\right)+8
x=3y+8లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-12+8
3 సార్లు -4ని గుణించండి.
x=-4
-12కు 8ని కూడండి.
x=-4,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-6y=16,-x+2y=-4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\-4\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-4\end{matrix}\right)
\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-4\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-6\\-1&2\end{matrix}\right))\left(\begin{matrix}16\\-4\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-6\left(-1\right)\right)}&-\frac{-6}{2\times 2-\left(-6\left(-1\right)\right)}\\-\frac{-1}{2\times 2-\left(-6\left(-1\right)\right)}&\frac{2}{2\times 2-\left(-6\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}16\\-4\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-3\\-\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}16\\-4\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16-3\left(-4\right)\\-\frac{1}{2}\times 16-\left(-4\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-4\end{matrix}\right)
అంకగణితము చేయండి.
x=-4,y=-4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-6y=16,-x+2y=-4
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-2x-\left(-6y\right)=-16,2\left(-1\right)x+2\times 2y=2\left(-4\right)
2x మరియు -xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
-2x+6y=-16,-2x+4y=-8
సరళీకృతం చేయండి.
-2x+2x+6y-4y=-16+8
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -2x+4y=-8ని -2x+6y=-16 నుండి వ్యవకలనం చేయండి.
6y-4y=-16+8
2xకు -2xని కూడండి. -2x మరియు 2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
2y=-16+8
-4yకు 6yని కూడండి.
2y=-8
8కు -16ని కూడండి.
y=-4
రెండు వైపులా 2తో భాగించండి.
-x+2\left(-4\right)=-4
-x+2y=-4లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-x-8=-4
2 సార్లు -4ని గుణించండి.
-x=4
సమీకరణం యొక్క రెండు వైపులా 8ని కూడండి.
x=-4
రెండు వైపులా -1తో భాగించండి.
x=-4,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.