x, yని పరిష్కరించండి
x=\frac{1}{4}=0.25
y = -\frac{19}{8} = -2\frac{3}{8} = -2.375
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2x-4y=10,6x-4y=11
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-4y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=4y+10
సమీకరణం యొక్క రెండు వైపులా 4yని కూడండి.
x=\frac{1}{2}\left(4y+10\right)
రెండు వైపులా 2తో భాగించండి.
x=2y+5
\frac{1}{2} సార్లు 4y+10ని గుణించండి.
6\left(2y+5\right)-4y=11
మరొక సమీకరణములో xను 2y+5 స్థానంలో ప్రతిక్షేపించండి, 6x-4y=11.
12y+30-4y=11
6 సార్లు 2y+5ని గుణించండి.
8y+30=11
-4yకు 12yని కూడండి.
8y=-19
సమీకరణము యొక్క రెండు భాగాల నుండి 30ని వ్యవకలనం చేయండి.
y=-\frac{19}{8}
రెండు వైపులా 8తో భాగించండి.
x=2\left(-\frac{19}{8}\right)+5
x=2y+5లో yను -\frac{19}{8} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{19}{4}+5
2 సార్లు -\frac{19}{8}ని గుణించండి.
x=\frac{1}{4}
-\frac{19}{4}కు 5ని కూడండి.
x=\frac{1}{4},y=-\frac{19}{8}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-4y=10,6x-4y=11
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-4\\6&-4\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-4\times 6\right)}&-\frac{-4}{2\left(-4\right)-\left(-4\times 6\right)}\\-\frac{6}{2\left(-4\right)-\left(-4\times 6\right)}&\frac{2}{2\left(-4\right)-\left(-4\times 6\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{3}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 10+\frac{1}{4}\times 11\\-\frac{3}{8}\times 10+\frac{1}{8}\times 11\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\-\frac{19}{8}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{1}{4},y=-\frac{19}{8}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-4y=10,6x-4y=11
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x-6x-4y+4y=10-11
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x-4y=11ని 2x-4y=10 నుండి వ్యవకలనం చేయండి.
2x-6x=10-11
4yకు -4yని కూడండి. -4y మరియు 4y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-4x=10-11
-6xకు 2xని కూడండి.
-4x=-1
-11కు 10ని కూడండి.
x=\frac{1}{4}
రెండు వైపులా -4తో భాగించండి.
6\times \frac{1}{4}-4y=11
6x-4y=11లో xను \frac{1}{4} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
\frac{3}{2}-4y=11
6 సార్లు \frac{1}{4}ని గుణించండి.
-4y=\frac{19}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{2}ని వ్యవకలనం చేయండి.
y=-\frac{19}{8}
రెండు వైపులా -4తో భాగించండి.
x=\frac{1}{4},y=-\frac{19}{8}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}