మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x-3y=0,-x+15y=2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-3y=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=3y
సమీకరణం యొక్క రెండు వైపులా 3yని కూడండి.
x=\frac{1}{2}\times 3y
రెండు వైపులా 2తో భాగించండి.
x=\frac{3}{2}y
\frac{1}{2} సార్లు 3yని గుణించండి.
-\frac{3}{2}y+15y=2
మరొక సమీకరణములో xను \frac{3y}{2} స్థానంలో ప్రతిక్షేపించండి, -x+15y=2.
\frac{27}{2}y=2
15yకు -\frac{3y}{2}ని కూడండి.
y=\frac{4}{27}
సమీకరణము యొక్క రెండు వైపులా \frac{27}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{3}{2}\times \frac{4}{27}
x=\frac{3}{2}yలో yను \frac{4}{27} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{2}{9}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{3}{2} సార్లు \frac{4}{27}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{2}{9},y=\frac{4}{27}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-3y=0,-x+15y=2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\-1&15\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{2\times 15-\left(-3\left(-1\right)\right)}&-\frac{-3}{2\times 15-\left(-3\left(-1\right)\right)}\\-\frac{-1}{2\times 15-\left(-3\left(-1\right)\right)}&\frac{2}{2\times 15-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{9}&\frac{1}{9}\\\frac{1}{27}&\frac{2}{27}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 2\\\frac{2}{27}\times 2\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\\\frac{4}{27}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{2}{9},y=\frac{4}{27}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-3y=0,-x+15y=2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-2x-\left(-3y\right)=0,2\left(-1\right)x+2\times 15y=2\times 2
2x మరియు -xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
-2x+3y=0,-2x+30y=4
సరళీకృతం చేయండి.
-2x+2x+3y-30y=-4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -2x+30y=4ని -2x+3y=0 నుండి వ్యవకలనం చేయండి.
3y-30y=-4
2xకు -2xని కూడండి. -2x మరియు 2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-27y=-4
-30yకు 3yని కూడండి.
y=\frac{4}{27}
రెండు వైపులా -27తో భాగించండి.
-x+15\times \frac{4}{27}=2
-x+15y=2లో yను \frac{4}{27} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-x+\frac{20}{9}=2
15 సార్లు \frac{4}{27}ని గుణించండి.
-x=-\frac{2}{9}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{20}{9}ని వ్యవకలనం చేయండి.
x=\frac{2}{9}
రెండు వైపులా -1తో భాగించండి.
x=\frac{2}{9},y=\frac{4}{27}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.