మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+y=4,x+3y=8
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-y+4
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-y+4\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{1}{2}y+2
\frac{1}{2} సార్లు -y+4ని గుణించండి.
-\frac{1}{2}y+2+3y=8
మరొక సమీకరణములో xను -\frac{y}{2}+2 స్థానంలో ప్రతిక్షేపించండి, x+3y=8.
\frac{5}{2}y+2=8
3yకు -\frac{y}{2}ని కూడండి.
\frac{5}{2}y=6
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
y=\frac{12}{5}
సమీకరణము యొక్క రెండు వైపులా \frac{5}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{2}\times \frac{12}{5}+2
x=-\frac{1}{2}y+2లో yను \frac{12}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{6}{5}+2
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{2} సార్లు \frac{12}{5}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{4}{5}
-\frac{6}{5}కు 2ని కూడండి.
x=\frac{4}{5},y=\frac{12}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+y=4,x+3y=8
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}2&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
\left(\begin{matrix}2&1\\1&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&3\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-1}&-\frac{1}{2\times 3-1}\\-\frac{1}{2\times 3-1}&\frac{2}{2\times 3-1}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&-\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 4-\frac{1}{5}\times 8\\-\frac{1}{5}\times 4+\frac{2}{5}\times 8\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\\\frac{12}{5}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{4}{5},y=\frac{12}{5}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+y=4,x+3y=8
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x+y=4,2x+2\times 3y=2\times 8
2x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
2x+y=4,2x+6y=16
సరళీకృతం చేయండి.
2x-2x+y-6y=4-16
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x+6y=16ని 2x+y=4 నుండి వ్యవకలనం చేయండి.
y-6y=4-16
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-5y=4-16
-6yకు yని కూడండి.
-5y=-12
-16కు 4ని కూడండి.
y=\frac{12}{5}
రెండు వైపులా -5తో భాగించండి.
x+3\times \frac{12}{5}=8
x+3y=8లో yను \frac{12}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x+\frac{36}{5}=8
3 సార్లు \frac{12}{5}ని గుణించండి.
x=\frac{4}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{36}{5}ని వ్యవకలనం చేయండి.
x=\frac{4}{5},y=\frac{12}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.