మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+4y=362,3x+2y=153.5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+4y=362
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-4y+362
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-4y+362\right)
రెండు వైపులా 2తో భాగించండి.
x=-2y+181
\frac{1}{2} సార్లు -4y+362ని గుణించండి.
3\left(-2y+181\right)+2y=153.5
మరొక సమీకరణములో xను -2y+181 స్థానంలో ప్రతిక్షేపించండి, 3x+2y=153.5.
-6y+543+2y=153.5
3 సార్లు -2y+181ని గుణించండి.
-4y+543=153.5
2yకు -6yని కూడండి.
-4y=-389.5
సమీకరణము యొక్క రెండు భాగాల నుండి 543ని వ్యవకలనం చేయండి.
y=97.375
రెండు వైపులా -4తో భాగించండి.
x=-2\times 97.375+181
x=-2y+181లో yను 97.375 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-194.75+181
-2 సార్లు 97.375ని గుణించండి.
x=-13.75
-194.75కు 181ని కూడండి.
x=-13.75,y=97.375
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+4y=362,3x+2y=153.5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}362\\153.5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}2&4\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}362\\153.5\end{matrix}\right)
\left(\begin{matrix}2&4\\3&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}362\\153.5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\3&2\end{matrix}\right))\left(\begin{matrix}362\\153.5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-4\times 3}&-\frac{4}{2\times 2-4\times 3}\\-\frac{3}{2\times 2-4\times 3}&\frac{2}{2\times 2-4\times 3}\end{matrix}\right)\left(\begin{matrix}362\\153.5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{2}\\\frac{3}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}362\\153.5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 362+\frac{1}{2}\times 153.5\\\frac{3}{8}\times 362-\frac{1}{4}\times 153.5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{55}{4}\\\frac{779}{8}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{55}{4},y=\frac{779}{8}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+4y=362,3x+2y=153.5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 2x+3\times 4y=3\times 362,2\times 3x+2\times 2y=2\times 153.5
2x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
6x+12y=1086,6x+4y=307
సరళీకృతం చేయండి.
6x-6x+12y-4y=1086-307
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x+4y=307ని 6x+12y=1086 నుండి వ్యవకలనం చేయండి.
12y-4y=1086-307
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
8y=1086-307
-4yకు 12yని కూడండి.
8y=779
-307కు 1086ని కూడండి.
y=\frac{779}{8}
రెండు వైపులా 8తో భాగించండి.
3x+2\times \frac{779}{8}=153.5
3x+2y=153.5లో yను \frac{779}{8} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x+\frac{779}{4}=153.5
2 సార్లు \frac{779}{8}ని గుణించండి.
3x=-\frac{165}{4}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{779}{4}ని వ్యవకలనం చేయండి.
x=-\frac{55}{4}
రెండు వైపులా 3తో భాగించండి.
x=-\frac{55}{4},y=\frac{779}{8}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.