మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+4y=10,x-y=7
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+4y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-4y+10
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-4y+10\right)
రెండు వైపులా 2తో భాగించండి.
x=-2y+5
\frac{1}{2} సార్లు -4y+10ని గుణించండి.
-2y+5-y=7
మరొక సమీకరణములో xను -2y+5 స్థానంలో ప్రతిక్షేపించండి, x-y=7.
-3y+5=7
-yకు -2yని కూడండి.
-3y=2
సమీకరణము యొక్క రెండు భాగాల నుండి 5ని వ్యవకలనం చేయండి.
y=-\frac{2}{3}
రెండు వైపులా -3తో భాగించండి.
x=-2\left(-\frac{2}{3}\right)+5
x=-2y+5లో yను -\frac{2}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{4}{3}+5
-2 సార్లు -\frac{2}{3}ని గుణించండి.
x=\frac{19}{3}
\frac{4}{3}కు 5ని కూడండి.
x=\frac{19}{3},y=-\frac{2}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+4y=10,x-y=7
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&4\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\7\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&4\\1&-1\end{matrix}\right))\left(\begin{matrix}2&4\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&-1\end{matrix}\right))\left(\begin{matrix}10\\7\end{matrix}\right)
\left(\begin{matrix}2&4\\1&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&-1\end{matrix}\right))\left(\begin{matrix}10\\7\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&-1\end{matrix}\right))\left(\begin{matrix}10\\7\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{4}{2\left(-1\right)-4}\\-\frac{1}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}10\\7\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{2}{3}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}10\\7\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{2}{3}\times 7\\\frac{1}{6}\times 10-\frac{1}{3}\times 7\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{3}\\-\frac{2}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{19}{3},y=-\frac{2}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+4y=10,x-y=7
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x+4y=10,2x+2\left(-1\right)y=2\times 7
2x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
2x+4y=10,2x-2y=14
సరళీకృతం చేయండి.
2x-2x+4y+2y=10-14
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x-2y=14ని 2x+4y=10 నుండి వ్యవకలనం చేయండి.
4y+2y=10-14
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
6y=10-14
2yకు 4yని కూడండి.
6y=-4
-14కు 10ని కూడండి.
y=-\frac{2}{3}
రెండు వైపులా 6తో భాగించండి.
x-\left(-\frac{2}{3}\right)=7
x-y=7లో yను -\frac{2}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{19}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2}{3}ని వ్యవకలనం చేయండి.
x=\frac{19}{3},y=-\frac{2}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.