మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=57,3x-5y=\frac{17}{2}
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=57
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y+57
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y+57\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y+\frac{57}{2}
\frac{1}{2} సార్లు -3y+57ని గుణించండి.
3\left(-\frac{3}{2}y+\frac{57}{2}\right)-5y=\frac{17}{2}
మరొక సమీకరణములో xను \frac{-3y+57}{2} స్థానంలో ప్రతిక్షేపించండి, 3x-5y=\frac{17}{2}.
-\frac{9}{2}y+\frac{171}{2}-5y=\frac{17}{2}
3 సార్లు \frac{-3y+57}{2}ని గుణించండి.
-\frac{19}{2}y+\frac{171}{2}=\frac{17}{2}
-5yకు -\frac{9y}{2}ని కూడండి.
-\frac{19}{2}y=-77
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{171}{2}ని వ్యవకలనం చేయండి.
y=\frac{154}{19}
సమీకరణము యొక్క రెండు వైపులా -\frac{19}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{2}\times \frac{154}{19}+\frac{57}{2}
x=-\frac{3}{2}y+\frac{57}{2}లో yను \frac{154}{19} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{231}{19}+\frac{57}{2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{3}{2} సార్లు \frac{154}{19}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{621}{38}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{231}{19}కు \frac{57}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{621}{38},y=\frac{154}{19}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=57,3x-5y=\frac{17}{2}
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}2&3\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
\left(\begin{matrix}2&3\\3&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-5\end{matrix}\right))\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-3\times 3}&-\frac{3}{2\left(-5\right)-3\times 3}\\-\frac{3}{2\left(-5\right)-3\times 3}&\frac{2}{2\left(-5\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}57\\\frac{17}{2}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 57+\frac{3}{19}\times \frac{17}{2}\\\frac{3}{19}\times 57-\frac{2}{19}\times \frac{17}{2}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{621}{38}\\\frac{154}{19}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{621}{38},y=\frac{154}{19}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=57,3x-5y=\frac{17}{2}
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 2x+3\times 3y=3\times 57,2\times 3x+2\left(-5\right)y=2\times \frac{17}{2}
2x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
6x+9y=171,6x-10y=17
సరళీకృతం చేయండి.
6x-6x+9y+10y=171-17
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x-10y=17ని 6x+9y=171 నుండి వ్యవకలనం చేయండి.
9y+10y=171-17
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
19y=171-17
10yకు 9yని కూడండి.
19y=154
-17కు 171ని కూడండి.
y=\frac{154}{19}
రెండు వైపులా 19తో భాగించండి.
3x-5\times \frac{154}{19}=\frac{17}{2}
3x-5y=\frac{17}{2}లో yను \frac{154}{19} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x-\frac{770}{19}=\frac{17}{2}
-5 సార్లు \frac{154}{19}ని గుణించండి.
3x=\frac{1863}{38}
సమీకరణం యొక్క రెండు వైపులా \frac{770}{19}ని కూడండి.
x=\frac{621}{38}
రెండు వైపులా 3తో భాగించండి.
x=\frac{621}{38},y=\frac{154}{19}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.