మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=2,4x+16y=3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y+2
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y+2\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y+1
\frac{1}{2} సార్లు -3y+2ని గుణించండి.
4\left(-\frac{3}{2}y+1\right)+16y=3
మరొక సమీకరణములో xను -\frac{3y}{2}+1 స్థానంలో ప్రతిక్షేపించండి, 4x+16y=3.
-6y+4+16y=3
4 సార్లు -\frac{3y}{2}+1ని గుణించండి.
10y+4=3
16yకు -6yని కూడండి.
10y=-1
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
y=-\frac{1}{10}
రెండు వైపులా 10తో భాగించండి.
x=-\frac{3}{2}\left(-\frac{1}{10}\right)+1
x=-\frac{3}{2}y+1లో yను -\frac{1}{10} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{3}{20}+1
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{3}{2} సార్లు -\frac{1}{10}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{23}{20}
\frac{3}{20}కు 1ని కూడండి.
x=\frac{23}{20},y=-\frac{1}{10}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=2,4x+16y=3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\4&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\4&16\end{matrix}\right))\left(\begin{matrix}2&3\\4&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&16\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
\left(\begin{matrix}2&3\\4&16\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&16\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&16\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{2\times 16-3\times 4}&-\frac{3}{2\times 16-3\times 4}\\-\frac{4}{2\times 16-3\times 4}&\frac{2}{2\times 16-3\times 4}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{3}{20}\\-\frac{1}{5}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\times 2-\frac{3}{20}\times 3\\-\frac{1}{5}\times 2+\frac{1}{10}\times 3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{20}\\-\frac{1}{10}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{23}{20},y=-\frac{1}{10}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=2,4x+16y=3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 2x+4\times 3y=4\times 2,2\times 4x+2\times 16y=2\times 3
2x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
8x+12y=8,8x+32y=6
సరళీకృతం చేయండి.
8x-8x+12y-32y=8-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8x+32y=6ని 8x+12y=8 నుండి వ్యవకలనం చేయండి.
12y-32y=8-6
-8xకు 8xని కూడండి. 8x మరియు -8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-20y=8-6
-32yకు 12yని కూడండి.
-20y=2
-6కు 8ని కూడండి.
y=-\frac{1}{10}
రెండు వైపులా -20తో భాగించండి.
4x+16\left(-\frac{1}{10}\right)=3
4x+16y=3లో yను -\frac{1}{10} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x-\frac{8}{5}=3
16 సార్లు -\frac{1}{10}ని గుణించండి.
4x=\frac{23}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{8}{5}ని కూడండి.
x=\frac{23}{20}
రెండు వైపులా 4తో భాగించండి.
x=\frac{23}{20},y=-\frac{1}{10}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.