మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+2y=6,x-3y=-1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+2y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-2y+6
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-2y+6\right)
రెండు వైపులా 2తో భాగించండి.
x=-y+3
\frac{1}{2} సార్లు -2y+6ని గుణించండి.
-y+3-3y=-1
మరొక సమీకరణములో xను -y+3 స్థానంలో ప్రతిక్షేపించండి, x-3y=-1.
-4y+3=-1
-3yకు -yని కూడండి.
-4y=-4
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
y=1
రెండు వైపులా -4తో భాగించండి.
x=-1+3
x=-y+3లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=2
-1కు 3ని కూడండి.
x=2,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+2y=6,x-3y=-1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}2&2\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
\left(\begin{matrix}2&2\\1&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&-3\end{matrix}\right))\left(\begin{matrix}6\\-1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-2}&-\frac{2}{2\left(-3\right)-2}\\-\frac{1}{2\left(-3\right)-2}&\frac{2}{2\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&\frac{1}{4}\\\frac{1}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\-1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 6+\frac{1}{4}\left(-1\right)\\\frac{1}{8}\times 6-\frac{1}{4}\left(-1\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+2y=6,x-3y=-1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x+2y=6,2x+2\left(-3\right)y=2\left(-1\right)
2x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
2x+2y=6,2x-6y=-2
సరళీకృతం చేయండి.
2x-2x+2y+6y=6+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x-6y=-2ని 2x+2y=6 నుండి వ్యవకలనం చేయండి.
2y+6y=6+2
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
8y=6+2
6yకు 2yని కూడండి.
8y=8
2కు 6ని కూడండి.
y=1
రెండు వైపులా 8తో భాగించండి.
x-3=-1
x-3y=-1లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=2
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
x=2,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.