మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

10x+4y=-12,-9x-5y=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
10x+4y=-12
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
10x=-4y-12
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{10}\left(-4y-12\right)
రెండు వైపులా 10తో భాగించండి.
x=-\frac{2}{5}y-\frac{6}{5}
\frac{1}{10} సార్లు -4y-12ని గుణించండి.
-9\left(-\frac{2}{5}y-\frac{6}{5}\right)-5y=1
మరొక సమీకరణములో xను \frac{-2y-6}{5} స్థానంలో ప్రతిక్షేపించండి, -9x-5y=1.
\frac{18}{5}y+\frac{54}{5}-5y=1
-9 సార్లు \frac{-2y-6}{5}ని గుణించండి.
-\frac{7}{5}y+\frac{54}{5}=1
-5yకు \frac{18y}{5}ని కూడండి.
-\frac{7}{5}y=-\frac{49}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{54}{5}ని వ్యవకలనం చేయండి.
y=7
సమీకరణము యొక్క రెండు వైపులా -\frac{7}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{5}\times 7-\frac{6}{5}
x=-\frac{2}{5}y-\frac{6}{5}లో yను 7 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-14-6}{5}
-\frac{2}{5} సార్లు 7ని గుణించండి.
x=-4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{14}{5}కు -\frac{6}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-4,y=7
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
10x+4y=-12,-9x-5y=1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{10\left(-5\right)-4\left(-9\right)}&-\frac{4}{10\left(-5\right)-4\left(-9\right)}\\-\frac{-9}{10\left(-5\right)-4\left(-9\right)}&\frac{10}{10\left(-5\right)-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&\frac{2}{7}\\-\frac{9}{14}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-12\right)+\frac{2}{7}\\-\frac{9}{14}\left(-12\right)-\frac{5}{7}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
అంకగణితము చేయండి.
x=-4,y=7
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
10x+4y=-12,-9x-5y=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-9\times 10x-9\times 4y=-9\left(-12\right),10\left(-9\right)x+10\left(-5\right)y=10
10x మరియు -9xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -9తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 10తో గుణించండి.
-90x-36y=108,-90x-50y=10
సరళీకృతం చేయండి.
-90x+90x-36y+50y=108-10
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -90x-50y=10ని -90x-36y=108 నుండి వ్యవకలనం చేయండి.
-36y+50y=108-10
90xకు -90xని కూడండి. -90x మరియు 90x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
14y=108-10
50yకు -36yని కూడండి.
14y=98
-10కు 108ని కూడండి.
y=7
రెండు వైపులా 14తో భాగించండి.
-9x-5\times 7=1
-9x-5y=1లో yను 7 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-9x-35=1
-5 సార్లు 7ని గుణించండి.
-9x=36
సమీకరణం యొక్క రెండు వైపులా 35ని కూడండి.
x=-4
రెండు వైపులా -9తో భాగించండి.
x=-4,y=7
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.