మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-x-y=-2,9x-2y=-15
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-x-y=-2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-x=y-2
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=-\left(y-2\right)
రెండు వైపులా -1తో భాగించండి.
x=-y+2
-1 సార్లు y-2ని గుణించండి.
9\left(-y+2\right)-2y=-15
మరొక సమీకరణములో xను -y+2 స్థానంలో ప్రతిక్షేపించండి, 9x-2y=-15.
-9y+18-2y=-15
9 సార్లు -y+2ని గుణించండి.
-11y+18=-15
-2yకు -9yని కూడండి.
-11y=-33
సమీకరణము యొక్క రెండు భాగాల నుండి 18ని వ్యవకలనం చేయండి.
y=3
రెండు వైపులా -11తో భాగించండి.
x=-3+2
x=-y+2లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-1
-3కు 2ని కూడండి.
x=-1,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-x-y=-2,9x-2y=-15
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-15\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-9\right)}&-\frac{-1}{-\left(-2\right)-\left(-9\right)}\\-\frac{9}{-\left(-2\right)-\left(-9\right)}&-\frac{1}{-\left(-2\right)-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{1}{11}\\-\frac{9}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\left(-2\right)+\frac{1}{11}\left(-15\right)\\-\frac{9}{11}\left(-2\right)-\frac{1}{11}\left(-15\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-x-y=-2,9x-2y=-15
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
9\left(-1\right)x+9\left(-1\right)y=9\left(-2\right),-9x-\left(-2y\right)=-\left(-15\right)
-x మరియు 9xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 9తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -1తో గుణించండి.
-9x-9y=-18,-9x+2y=15
సరళీకృతం చేయండి.
-9x+9x-9y-2y=-18-15
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -9x+2y=15ని -9x-9y=-18 నుండి వ్యవకలనం చేయండి.
-9y-2y=-18-15
9xకు -9xని కూడండి. -9x మరియు 9x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-11y=-18-15
-2yకు -9yని కూడండి.
-11y=-33
-15కు -18ని కూడండి.
y=3
రెండు వైపులా -11తో భాగించండి.
9x-2\times 3=-15
9x-2y=-15లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
9x-6=-15
-2 సార్లు 3ని గుణించండి.
9x=-9
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x=-1
రెండు వైపులా 9తో భాగించండి.
x=-1,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.