x, yని పరిష్కరించండి
x=-1
y=2
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-x+y=3,2x+2y=2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-x+y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-x=-y+3
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=-\left(-y+3\right)
రెండు వైపులా -1తో భాగించండి.
x=y-3
-1 సార్లు -y+3ని గుణించండి.
2\left(y-3\right)+2y=2
మరొక సమీకరణములో xను y-3 స్థానంలో ప్రతిక్షేపించండి, 2x+2y=2.
2y-6+2y=2
2 సార్లు y-3ని గుణించండి.
4y-6=2
2yకు 2yని కూడండి.
4y=8
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
y=2
రెండు వైపులా 4తో భాగించండి.
x=2-3
x=y-3లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-1
2కు -3ని కూడండి.
x=-1,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-x+y=3,2x+2y=2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}-1&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
\left(\begin{matrix}-1&1\\2&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\2&2\end{matrix}\right))\left(\begin{matrix}3\\2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-2-2}&-\frac{1}{-2-2}\\-\frac{2}{-2-2}&-\frac{1}{-2-2}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}3\\2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 3+\frac{1}{4}\times 2\\\frac{1}{2}\times 3+\frac{1}{4}\times 2\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-x+y=3,2x+2y=2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\left(-1\right)x+2y=2\times 3,-2x-2y=-2
-x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -1తో గుణించండి.
-2x+2y=6,-2x-2y=-2
సరళీకృతం చేయండి.
-2x+2x+2y+2y=6+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -2x-2y=-2ని -2x+2y=6 నుండి వ్యవకలనం చేయండి.
2y+2y=6+2
2xకు -2xని కూడండి. -2x మరియు 2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4y=6+2
2yకు 2yని కూడండి.
4y=8
2కు 6ని కూడండి.
y=2
రెండు వైపులా 4తో భాగించండి.
2x+2\times 2=2
2x+2y=2లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x+4=2
2 సార్లు 2ని గుణించండి.
2x=-2
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
x=-1
రెండు వైపులా 2తో భాగించండి.
x=-1,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}