మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-8x-6y=30,-6x+2y=-10
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-8x-6y=30
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-8x=6y+30
సమీకరణం యొక్క రెండు వైపులా 6yని కూడండి.
x=-\frac{1}{8}\left(6y+30\right)
రెండు వైపులా -8తో భాగించండి.
x=-\frac{3}{4}y-\frac{15}{4}
-\frac{1}{8} సార్లు 30+6yని గుణించండి.
-6\left(-\frac{3}{4}y-\frac{15}{4}\right)+2y=-10
మరొక సమీకరణములో xను \frac{-3y-15}{4} స్థానంలో ప్రతిక్షేపించండి, -6x+2y=-10.
\frac{9}{2}y+\frac{45}{2}+2y=-10
-6 సార్లు \frac{-3y-15}{4}ని గుణించండి.
\frac{13}{2}y+\frac{45}{2}=-10
2yకు \frac{9y}{2}ని కూడండి.
\frac{13}{2}y=-\frac{65}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{45}{2}ని వ్యవకలనం చేయండి.
y=-5
సమీకరణము యొక్క రెండు వైపులా \frac{13}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{4}\left(-5\right)-\frac{15}{4}
x=-\frac{3}{4}y-\frac{15}{4}లో yను -5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{15-15}{4}
-\frac{3}{4} సార్లు -5ని గుణించండి.
x=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{15}{4}కు -\frac{15}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=0,y=-5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-8x-6y=30,-6x+2y=-10
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-10\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}\\-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{8}{-8\times 2-\left(-6\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}&-\frac{3}{26}\\-\frac{3}{26}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}\times 30-\frac{3}{26}\left(-10\right)\\-\frac{3}{26}\times 30+\frac{2}{13}\left(-10\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
అంకగణితము చేయండి.
x=0,y=-5
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-8x-6y=30,-6x+2y=-10
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-6\left(-8\right)x-6\left(-6\right)y=-6\times 30,-8\left(-6\right)x-8\times 2y=-8\left(-10\right)
-8x మరియు -6xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -6తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -8తో గుణించండి.
48x+36y=-180,48x-16y=80
సరళీకృతం చేయండి.
48x-48x+36y+16y=-180-80
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 48x-16y=80ని 48x+36y=-180 నుండి వ్యవకలనం చేయండి.
36y+16y=-180-80
-48xకు 48xని కూడండి. 48x మరియు -48x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
52y=-180-80
16yకు 36yని కూడండి.
52y=-260
-80కు -180ని కూడండి.
y=-5
రెండు వైపులా 52తో భాగించండి.
-6x+2\left(-5\right)=-10
-6x+2y=-10లో yను -5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-6x-10=-10
2 సార్లు -5ని గుణించండి.
-6x=0
సమీకరణం యొక్క రెండు వైపులా 10ని కూడండి.
x=0
రెండు వైపులా -6తో భాగించండి.
x=0,y=-5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.