x, yని పరిష్కరించండి
x=4
y=2
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-7x+2y=-24,5x-y=18
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-7x+2y=-24
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-7x=-2y-24
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=-\frac{1}{7}\left(-2y-24\right)
రెండు వైపులా -7తో భాగించండి.
x=\frac{2}{7}y+\frac{24}{7}
-\frac{1}{7} సార్లు -2y-24ని గుణించండి.
5\left(\frac{2}{7}y+\frac{24}{7}\right)-y=18
మరొక సమీకరణములో xను \frac{24+2y}{7} స్థానంలో ప్రతిక్షేపించండి, 5x-y=18.
\frac{10}{7}y+\frac{120}{7}-y=18
5 సార్లు \frac{24+2y}{7}ని గుణించండి.
\frac{3}{7}y+\frac{120}{7}=18
-yకు \frac{10y}{7}ని కూడండి.
\frac{3}{7}y=\frac{6}{7}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{120}{7}ని వ్యవకలనం చేయండి.
y=2
సమీకరణము యొక్క రెండు వైపులా \frac{3}{7}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{7}\times 2+\frac{24}{7}
x=\frac{2}{7}y+\frac{24}{7}లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{4+24}{7}
\frac{2}{7} సార్లు 2ని గుణించండి.
x=4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{4}{7}కు \frac{24}{7}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-7x+2y=-24,5x-y=18
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\18\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\5&-1\end{matrix}\right))\left(\begin{matrix}-24\\18\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-7\left(-1\right)-2\times 5}&-\frac{2}{-7\left(-1\right)-2\times 5}\\-\frac{5}{-7\left(-1\right)-2\times 5}&-\frac{7}{-7\left(-1\right)-2\times 5}\end{matrix}\right)\left(\begin{matrix}-24\\18\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\\frac{5}{3}&\frac{7}{3}\end{matrix}\right)\left(\begin{matrix}-24\\18\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-24\right)+\frac{2}{3}\times 18\\\frac{5}{3}\left(-24\right)+\frac{7}{3}\times 18\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=4,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-7x+2y=-24,5x-y=18
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\left(-7\right)x+5\times 2y=5\left(-24\right),-7\times 5x-7\left(-1\right)y=-7\times 18
-7x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -7తో గుణించండి.
-35x+10y=-120,-35x+7y=-126
సరళీకృతం చేయండి.
-35x+35x+10y-7y=-120+126
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -35x+7y=-126ని -35x+10y=-120 నుండి వ్యవకలనం చేయండి.
10y-7y=-120+126
35xకు -35xని కూడండి. -35x మరియు 35x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
3y=-120+126
-7yకు 10yని కూడండి.
3y=6
126కు -120ని కూడండి.
y=2
రెండు వైపులా 3తో భాగించండి.
5x-2=18
5x-y=18లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x=20
సమీకరణం యొక్క రెండు వైపులా 2ని కూడండి.
x=4
రెండు వైపులా 5తో భాగించండి.
x=4,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}