x, yని పరిష్కరించండి
x=0
y=-2
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-6x+y=-2,-3x-6y=12
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-6x+y=-2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-6x=-y-2
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=-\frac{1}{6}\left(-y-2\right)
రెండు వైపులా -6తో భాగించండి.
x=\frac{1}{6}y+\frac{1}{3}
-\frac{1}{6} సార్లు -y-2ని గుణించండి.
-3\left(\frac{1}{6}y+\frac{1}{3}\right)-6y=12
మరొక సమీకరణములో xను \frac{y}{6}+\frac{1}{3} స్థానంలో ప్రతిక్షేపించండి, -3x-6y=12.
-\frac{1}{2}y-1-6y=12
-3 సార్లు \frac{y}{6}+\frac{1}{3}ని గుణించండి.
-\frac{13}{2}y-1=12
-6yకు -\frac{y}{2}ని కూడండి.
-\frac{13}{2}y=13
సమీకరణం యొక్క రెండు వైపులా 1ని కూడండి.
y=-2
సమీకరణము యొక్క రెండు వైపులా -\frac{13}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{6}\left(-2\right)+\frac{1}{3}
x=\frac{1}{6}y+\frac{1}{3}లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-1+1}{3}
\frac{1}{6} సార్లు -2ని గుణించండి.
x=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{1}{3}కు \frac{1}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=0,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-6x+y=-2,-3x-6y=12
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\12\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}-2\\12\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-6\left(-6\right)-\left(-3\right)}&-\frac{1}{-6\left(-6\right)-\left(-3\right)}\\-\frac{-3}{-6\left(-6\right)-\left(-3\right)}&-\frac{6}{-6\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}&-\frac{1}{39}\\\frac{1}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-2\\12\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{13}\left(-2\right)-\frac{1}{39}\times 12\\\frac{1}{13}\left(-2\right)-\frac{2}{13}\times 12\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
అంకగణితము చేయండి.
x=0,y=-2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-6x+y=-2,-3x-6y=12
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-3\left(-6\right)x-3y=-3\left(-2\right),-6\left(-3\right)x-6\left(-6\right)y=-6\times 12
-6x మరియు -3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -6తో గుణించండి.
18x-3y=6,18x+36y=-72
సరళీకృతం చేయండి.
18x-18x-3y-36y=6+72
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 18x+36y=-72ని 18x-3y=6 నుండి వ్యవకలనం చేయండి.
-3y-36y=6+72
-18xకు 18xని కూడండి. 18x మరియు -18x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-39y=6+72
-36yకు -3yని కూడండి.
-39y=78
72కు 6ని కూడండి.
y=-2
రెండు వైపులా -39తో భాగించండి.
-3x-6\left(-2\right)=12
-3x-6y=12లో yను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-3x+12=12
-6 సార్లు -2ని గుణించండి.
-3x=0
సమీకరణము యొక్క రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి.
x=0
రెండు వైపులా -3తో భాగించండి.
x=0,y=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}