x, yని పరిష్కరించండి
x=10
y=-6
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-4x-10y=20,8x+10y=20
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-4x-10y=20
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-4x=10y+20
సమీకరణం యొక్క రెండు వైపులా 10yని కూడండి.
x=-\frac{1}{4}\left(10y+20\right)
రెండు వైపులా -4తో భాగించండి.
x=-\frac{5}{2}y-5
-\frac{1}{4} సార్లు 20+10yని గుణించండి.
8\left(-\frac{5}{2}y-5\right)+10y=20
మరొక సమీకరణములో xను -\frac{5y}{2}-5 స్థానంలో ప్రతిక్షేపించండి, 8x+10y=20.
-20y-40+10y=20
8 సార్లు -\frac{5y}{2}-5ని గుణించండి.
-10y-40=20
10yకు -20yని కూడండి.
-10y=60
సమీకరణం యొక్క రెండు వైపులా 40ని కూడండి.
y=-6
రెండు వైపులా -10తో భాగించండి.
x=-\frac{5}{2}\left(-6\right)-5
x=-\frac{5}{2}y-5లో yను -6 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=15-5
-\frac{5}{2} సార్లు -6ని గుణించండి.
x=10
15కు -5ని కూడండి.
x=10,y=-6
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-4x-10y=20,8x+10y=20
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&-10\\8&10\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{-4\times 10-\left(-10\times 8\right)}&-\frac{-10}{-4\times 10-\left(-10\times 8\right)}\\-\frac{8}{-4\times 10-\left(-10\times 8\right)}&-\frac{4}{-4\times 10-\left(-10\times 8\right)}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{5}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 20+\frac{1}{4}\times 20\\-\frac{1}{5}\times 20-\frac{1}{10}\times 20\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-6\end{matrix}\right)
అంకగణితము చేయండి.
x=10,y=-6
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-4x-10y=20,8x+10y=20
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
8\left(-4\right)x+8\left(-10\right)y=8\times 20,-4\times 8x-4\times 10y=-4\times 20
-4x మరియు 8xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 8తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -4తో గుణించండి.
-32x-80y=160,-32x-40y=-80
సరళీకృతం చేయండి.
-32x+32x-80y+40y=160+80
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -32x-40y=-80ని -32x-80y=160 నుండి వ్యవకలనం చేయండి.
-80y+40y=160+80
32xకు -32xని కూడండి. -32x మరియు 32x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-40y=160+80
40yకు -80yని కూడండి.
-40y=240
80కు 160ని కూడండి.
y=-6
రెండు వైపులా -40తో భాగించండి.
8x+10\left(-6\right)=20
8x+10y=20లో yను -6 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
8x-60=20
10 సార్లు -6ని గుణించండి.
8x=80
సమీకరణం యొక్క రెండు వైపులా 60ని కూడండి.
x=10
రెండు వైపులా 8తో భాగించండి.
x=10,y=-6
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}