x, yని పరిష్కరించండి
x=-4
y=-1
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-3x-5y=17,-5x+6y=14
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-3x-5y=17
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-3x=5y+17
సమీకరణం యొక్క రెండు వైపులా 5yని కూడండి.
x=-\frac{1}{3}\left(5y+17\right)
రెండు వైపులా -3తో భాగించండి.
x=-\frac{5}{3}y-\frac{17}{3}
-\frac{1}{3} సార్లు 5y+17ని గుణించండి.
-5\left(-\frac{5}{3}y-\frac{17}{3}\right)+6y=14
మరొక సమీకరణములో xను \frac{-5y-17}{3} స్థానంలో ప్రతిక్షేపించండి, -5x+6y=14.
\frac{25}{3}y+\frac{85}{3}+6y=14
-5 సార్లు \frac{-5y-17}{3}ని గుణించండి.
\frac{43}{3}y+\frac{85}{3}=14
6yకు \frac{25y}{3}ని కూడండి.
\frac{43}{3}y=-\frac{43}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{85}{3}ని వ్యవకలనం చేయండి.
y=-1
సమీకరణము యొక్క రెండు వైపులా \frac{43}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{5}{3}\left(-1\right)-\frac{17}{3}
x=-\frac{5}{3}y-\frac{17}{3}లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{5-17}{3}
-\frac{5}{3} సార్లు -1ని గుణించండి.
x=-4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{5}{3}కు -\frac{17}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-4,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-3x-5y=17,-5x+6y=14
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\14\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}17\\14\end{matrix}\right)
\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}17\\14\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&-5\\-5&6\end{matrix}\right))\left(\begin{matrix}17\\14\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-3\times 6-\left(-5\left(-5\right)\right)}&-\frac{-5}{-3\times 6-\left(-5\left(-5\right)\right)}\\-\frac{-5}{-3\times 6-\left(-5\left(-5\right)\right)}&-\frac{3}{-3\times 6-\left(-5\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}17\\14\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{43}&-\frac{5}{43}\\-\frac{5}{43}&\frac{3}{43}\end{matrix}\right)\left(\begin{matrix}17\\14\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{43}\times 17-\frac{5}{43}\times 14\\-\frac{5}{43}\times 17+\frac{3}{43}\times 14\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
అంకగణితము చేయండి.
x=-4,y=-1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-3x-5y=17,-5x+6y=14
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5\left(-3\right)x-5\left(-5\right)y=-5\times 17,-3\left(-5\right)x-3\times 6y=-3\times 14
-3x మరియు -5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -3తో గుణించండి.
15x+25y=-85,15x-18y=-42
సరళీకృతం చేయండి.
15x-15x+25y+18y=-85+42
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x-18y=-42ని 15x+25y=-85 నుండి వ్యవకలనం చేయండి.
25y+18y=-85+42
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
43y=-85+42
18yకు 25yని కూడండి.
43y=-43
42కు -85ని కూడండి.
y=-1
రెండు వైపులా 43తో భాగించండి.
-5x+6\left(-1\right)=14
-5x+6y=14లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-5x-6=14
6 సార్లు -1ని గుణించండి.
-5x=20
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x=-4
రెండు వైపులా -5తో భాగించండి.
x=-4,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}