మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+y=2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా yని జోడించండి.
-3x+2y=4,x+y=2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-3x+2y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-3x=-2y+4
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=-\frac{1}{3}\left(-2y+4\right)
రెండు వైపులా -3తో భాగించండి.
x=\frac{2}{3}y-\frac{4}{3}
-\frac{1}{3} సార్లు -2y+4ని గుణించండి.
\frac{2}{3}y-\frac{4}{3}+y=2
మరొక సమీకరణములో xను \frac{-4+2y}{3} స్థానంలో ప్రతిక్షేపించండి, x+y=2.
\frac{5}{3}y-\frac{4}{3}=2
yకు \frac{2y}{3}ని కూడండి.
\frac{5}{3}y=\frac{10}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{4}{3}ని కూడండి.
y=2
సమీకరణము యొక్క రెండు వైపులా \frac{5}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{3}\times 2-\frac{4}{3}
x=\frac{2}{3}y-\frac{4}{3}లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{4-4}{3}
\frac{2}{3} సార్లు 2ని గుణించండి.
x=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{4}{3}కు -\frac{4}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=0,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+y=2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా yని జోడించండి.
-3x+2y=4,x+y=2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}-3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}-3&2\\1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&2\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-3-2}&-\frac{2}{-3-2}\\-\frac{1}{-3-2}&-\frac{3}{-3-2}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}&\frac{2}{5}\\\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5}\times 4+\frac{2}{5}\times 2\\\frac{1}{5}\times 4+\frac{3}{5}\times 2\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=0,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+y=2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు వైపులా yని జోడించండి.
-3x+2y=4,x+y=2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-3x+2y=4,-3x-3y=-3\times 2
-3x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -3తో గుణించండి.
-3x+2y=4,-3x-3y=-6
సరళీకృతం చేయండి.
-3x+3x+2y+3y=4+6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -3x-3y=-6ని -3x+2y=4 నుండి వ్యవకలనం చేయండి.
2y+3y=4+6
3xకు -3xని కూడండి. -3x మరియు 3x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
5y=4+6
3yకు 2yని కూడండి.
5y=10
6కు 4ని కూడండి.
y=2
రెండు వైపులా 5తో భాగించండి.
x+2=2
x+y=2లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=0
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
x=0,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.