x, yని పరిష్కరించండి
x=7
y=9
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-2x+3y=13,6x-5y=-3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-2x+3y=13
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-2x=-3y+13
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=-\frac{1}{2}\left(-3y+13\right)
రెండు వైపులా -2తో భాగించండి.
x=\frac{3}{2}y-\frac{13}{2}
-\frac{1}{2} సార్లు -3y+13ని గుణించండి.
6\left(\frac{3}{2}y-\frac{13}{2}\right)-5y=-3
మరొక సమీకరణములో xను \frac{3y-13}{2} స్థానంలో ప్రతిక్షేపించండి, 6x-5y=-3.
9y-39-5y=-3
6 సార్లు \frac{3y-13}{2}ని గుణించండి.
4y-39=-3
-5yకు 9yని కూడండి.
4y=36
సమీకరణం యొక్క రెండు వైపులా 39ని కూడండి.
y=9
రెండు వైపులా 4తో భాగించండి.
x=\frac{3}{2}\times 9-\frac{13}{2}
x=\frac{3}{2}y-\frac{13}{2}లో yను 9 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{27-13}{2}
\frac{3}{2} సార్లు 9ని గుణించండి.
x=7
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{27}{2}కు -\frac{13}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=7,y=9
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-2x+3y=13,6x-5y=-3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\6&-5\end{matrix}\right))\left(\begin{matrix}13\\-3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-2\left(-5\right)-3\times 6}&-\frac{3}{-2\left(-5\right)-3\times 6}\\-\frac{6}{-2\left(-5\right)-3\times 6}&-\frac{2}{-2\left(-5\right)-3\times 6}\end{matrix}\right)\left(\begin{matrix}13\\-3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}&\frac{3}{8}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}13\\-3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{8}\times 13+\frac{3}{8}\left(-3\right)\\\frac{3}{4}\times 13+\frac{1}{4}\left(-3\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
అంకగణితము చేయండి.
x=7,y=9
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-2x+3y=13,6x-5y=-3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6\left(-2\right)x+6\times 3y=6\times 13,-2\times 6x-2\left(-5\right)y=-2\left(-3\right)
-2x మరియు 6xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 6తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -2తో గుణించండి.
-12x+18y=78,-12x+10y=6
సరళీకృతం చేయండి.
-12x+12x+18y-10y=78-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -12x+10y=6ని -12x+18y=78 నుండి వ్యవకలనం చేయండి.
18y-10y=78-6
12xకు -12xని కూడండి. -12x మరియు 12x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
8y=78-6
-10yకు 18yని కూడండి.
8y=72
-6కు 78ని కూడండి.
y=9
రెండు వైపులా 8తో భాగించండి.
6x-5\times 9=-3
6x-5y=-3లో yను 9 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
6x-45=-3
-5 సార్లు 9ని గుణించండి.
6x=42
సమీకరణం యొక్క రెండు వైపులా 45ని కూడండి.
x=7
రెండు వైపులా 6తో భాగించండి.
x=7,y=9
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}