మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

-10x+6y=-14,-x+4y=-15
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-10x+6y=-14
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-10x=-6y-14
సమీకరణము యొక్క రెండు భాగాల నుండి 6yని వ్యవకలనం చేయండి.
x=-\frac{1}{10}\left(-6y-14\right)
రెండు వైపులా -10తో భాగించండి.
x=\frac{3}{5}y+\frac{7}{5}
-\frac{1}{10} సార్లు -6y-14ని గుణించండి.
-\left(\frac{3}{5}y+\frac{7}{5}\right)+4y=-15
మరొక సమీకరణములో xను \frac{3y+7}{5} స్థానంలో ప్రతిక్షేపించండి, -x+4y=-15.
-\frac{3}{5}y-\frac{7}{5}+4y=-15
-1 సార్లు \frac{3y+7}{5}ని గుణించండి.
\frac{17}{5}y-\frac{7}{5}=-15
4yకు -\frac{3y}{5}ని కూడండి.
\frac{17}{5}y=-\frac{68}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{7}{5}ని కూడండి.
y=-4
సమీకరణము యొక్క రెండు వైపులా \frac{17}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{3}{5}\left(-4\right)+\frac{7}{5}
x=\frac{3}{5}y+\frac{7}{5}లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-12+7}{5}
\frac{3}{5} సార్లు -4ని గుణించండి.
x=-1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{12}{5}కు \frac{7}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-1,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-10x+6y=-14,-x+4y=-15
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\-15\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right))\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right))\left(\begin{matrix}-14\\-15\end{matrix}\right)
\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right))\left(\begin{matrix}-14\\-15\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&6\\-1&4\end{matrix}\right))\left(\begin{matrix}-14\\-15\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{-10\times 4-6\left(-1\right)}&-\frac{6}{-10\times 4-6\left(-1\right)}\\-\frac{-1}{-10\times 4-6\left(-1\right)}&-\frac{10}{-10\times 4-6\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-14\\-15\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{17}&\frac{3}{17}\\-\frac{1}{34}&\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}-14\\-15\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{17}\left(-14\right)+\frac{3}{17}\left(-15\right)\\-\frac{1}{34}\left(-14\right)+\frac{5}{17}\left(-15\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=-4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-10x+6y=-14,-x+4y=-15
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-\left(-10\right)x-6y=-\left(-14\right),-10\left(-1\right)x-10\times 4y=-10\left(-15\right)
-10x మరియు -xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -10తో గుణించండి.
10x-6y=14,10x-40y=150
సరళీకృతం చేయండి.
10x-10x-6y+40y=14-150
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 10x-40y=150ని 10x-6y=14 నుండి వ్యవకలనం చేయండి.
-6y+40y=14-150
-10xకు 10xని కూడండి. 10x మరియు -10x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
34y=14-150
40yకు -6yని కూడండి.
34y=-136
-150కు 14ని కూడండి.
y=-4
రెండు వైపులా 34తో భాగించండి.
-x+4\left(-4\right)=-15
-x+4y=-15లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-x-16=-15
4 సార్లు -4ని గుణించండి.
-x=1
సమీకరణం యొక్క రెండు వైపులా 16ని కూడండి.
x=-1
రెండు వైపులా -1తో భాగించండి.
x=-1,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.