xని పరిష్కరించండి
x=3
x=4
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3ని 3x-4ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
3x^{2}-13x+12=\left(2x-6\right)x
2తో x-3ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12=2x^{2}-6x
xతో 2x-6ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12-2x^{2}=-6x
రెండు భాగాల నుండి 2x^{2}ని వ్యవకలనం చేయండి.
x^{2}-13x+12=-6x
x^{2}ని పొందడం కోసం 3x^{2} మరియు -2x^{2}ని జత చేయండి.
x^{2}-13x+12+6x=0
రెండు వైపులా 6xని జోడించండి.
x^{2}-7x+12=0
-7xని పొందడం కోసం -13x మరియు 6xని జత చేయండి.
a+b=-7 ab=12
సమీకరణాన్ని పరిష్కరించడం కోసం, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) సూత్రాన్ని ఉపయోగించి x^{2}-7x+12ని ఫ్యాక్టర్ చేయండి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-12 -2,-6 -3,-4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 12ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-12=-13 -2-6=-8 -3-4=-7
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-4 b=-3
సమ్ -7ను అందించే పెయిర్ మన పరిష్కారం.
\left(x-4\right)\left(x-3\right)
పొందిన విలువలను ఉపయోగించి ఫ్యాక్టర్ చేసిన సమీకరణం \left(x+a\right)\left(x+b\right)ను తిరిగి వ్రాయండి.
x=4 x=3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-4=0 మరియు x-3=0ని పరిష్కరించండి.
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3ని 3x-4ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
3x^{2}-13x+12=\left(2x-6\right)x
2తో x-3ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12=2x^{2}-6x
xతో 2x-6ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12-2x^{2}=-6x
రెండు భాగాల నుండి 2x^{2}ని వ్యవకలనం చేయండి.
x^{2}-13x+12=-6x
x^{2}ని పొందడం కోసం 3x^{2} మరియు -2x^{2}ని జత చేయండి.
x^{2}-13x+12+6x=0
రెండు వైపులా 6xని జోడించండి.
x^{2}-7x+12=0
-7xని పొందడం కోసం -13x మరియు 6xని జత చేయండి.
a+b=-7 ab=1\times 12=12
సమీకరణాన్ని పరిష్కరించడం కోసం, ఎడమ చేతి వైపును గ్రూప్ చేసి, ఫ్యాక్టర్ చేయండి. ముందుగా, ఎడమ చేతి వైపును x^{2}+ax+bx+12 లాగా తిరిగి వ్రాయాలి. a, bను కనుగొనాలంటే, పరిష్కరించాల్సిన సిస్టమ్ను సెటప్ చేయాలి.
-1,-12 -2,-6 -3,-4
ab పాజిటివ్ కనుక, a మరియు b ఒకే గుర్తును కలిగి ఉంటాయి. a+b నెగిటివ్ కనుక, a మరియు b రెండూ నెగిటివ్గా ఉంటాయి. ప్రాడక్ట్ 12ని అందించగల అన్ని పెయిర్లను జాబితా చేయండి.
-1-12=-13 -2-6=-8 -3-4=-7
ప్రతి పెయిర్ యొక్క మొత్తాన్ని గణించండి.
a=-4 b=-3
సమ్ -7ను అందించే పెయిర్ మన పరిష్కారం.
\left(x^{2}-4x\right)+\left(-3x+12\right)
\left(x^{2}-4x\right)+\left(-3x+12\right)ని x^{2}-7x+12 వలె తిరిగి వ్రాయండి.
x\left(x-4\right)-3\left(x-4\right)
మొదటి సమూహంలో x మరియు రెండవ సమూహంలో -3 ఫ్యాక్టర్ చేయండి.
\left(x-4\right)\left(x-3\right)
డిస్ట్రిబ్యూటివ్ ప్రాపర్టీని ఉపయోగించి కామన్ టర్మ్ x-4ని ఫ్యాక్టర్ అవుట్ చేయండి.
x=4 x=3
సమీకరణ పరిష్కారాలను కనుగొనడం కోసం, x-4=0 మరియు x-3=0ని పరిష్కరించండి.
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3ని 3x-4ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
3x^{2}-13x+12=\left(2x-6\right)x
2తో x-3ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12=2x^{2}-6x
xతో 2x-6ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12-2x^{2}=-6x
రెండు భాగాల నుండి 2x^{2}ని వ్యవకలనం చేయండి.
x^{2}-13x+12=-6x
x^{2}ని పొందడం కోసం 3x^{2} మరియు -2x^{2}ని జత చేయండి.
x^{2}-13x+12+6x=0
రెండు వైపులా 6xని జోడించండి.
x^{2}-7x+12=0
-7xని పొందడం కోసం -13x మరియు 6xని జత చేయండి.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
ఈ సమీకరణం ప్రామాణిక ఆకృతిలో ఉంది: ax^{2}+bx+c=0. చతురస్రీయమైన సూత్రం \frac{-b±\sqrt{b^{2}-4ac}}{2a} a స్థానంలో 1, b స్థానంలో -7 మరియు c స్థానంలో 12 ప్రతిక్షేపించండి.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
-7 వర్గము.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
-4 సార్లు 12ని గుణించండి.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
-48కు 49ని కూడండి.
x=\frac{-\left(-7\right)±1}{2}
1 వర్గమూలాన్ని తీసుకోండి.
x=\frac{7±1}{2}
-7 సంఖ్య యొక్క వ్యతిరేకం 7.
x=\frac{8}{2}
ఇప్పుడు ± ధనాత్మకం అని భావించి x=\frac{7±1}{2} సమీకరణాన్ని పరిష్కరించండి. 1కు 7ని కూడండి.
x=4
2తో 8ని భాగించండి.
x=\frac{6}{2}
ఇప్పుడు ± రుణాత్మకం అని భావించి x=\frac{7±1}{2} సమీకరణాన్ని పరిష్కరించండి. 1ని 7 నుండి వ్యవకలనం చేయండి.
x=3
2తో 6ని భాగించండి.
x=4 x=3
సమీకరణం ఇప్పుడు పరిష్కరించబడింది.
3x^{2}-13x+12=\left(x-3\right)\times 2x
x-3ని 3x-4ని గుణించి, సారూప్య అంశాలను కలపడం కోసం డిస్ట్రిబ్యూటివ్ లక్షణాన్ని ఉపయోగించండి.
3x^{2}-13x+12=\left(2x-6\right)x
2తో x-3ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12=2x^{2}-6x
xతో 2x-6ని గుణించడం కోసం పంచి యిచ్చెడు నియమాన్ని ఉపయోగించండి.
3x^{2}-13x+12-2x^{2}=-6x
రెండు భాగాల నుండి 2x^{2}ని వ్యవకలనం చేయండి.
x^{2}-13x+12=-6x
x^{2}ని పొందడం కోసం 3x^{2} మరియు -2x^{2}ని జత చేయండి.
x^{2}-13x+12+6x=0
రెండు వైపులా 6xని జోడించండి.
x^{2}-7x+12=0
-7xని పొందడం కోసం -13x మరియు 6xని జత చేయండి.
x^{2}-7x=-12
రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి. సున్నా నుండి ఏ సంఖ్యను తీసివేసినా కూడా దాని రుణాత్మక రూపం వస్తుంది.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-12+\left(-\frac{7}{2}\right)^{2}
x రాశి యొక్క గుణకము -7ని 2తో భాగించి -\frac{7}{2}ని పొందండి. ఆపై సమీకరణము యొక్క రెండు వైపులా ఫలితానికి -\frac{7}{2} యొక్క వర్గమును జోడించండి. సమీకరణము ఈ దశ తర్వాత ఎడమవైపు సంపూర్ణచతురస్రము.
x^{2}-7x+\frac{49}{4}=-12+\frac{49}{4}
భిన్నము యొక్క లవము మరియు హారమును వర్గము చేయడం ద్వారా -\frac{7}{2}ని వర్గము చేయండి.
x^{2}-7x+\frac{49}{4}=\frac{1}{4}
\frac{49}{4}కు -12ని కూడండి.
\left(x-\frac{7}{2}\right)^{2}=\frac{1}{4}
కారకం x^{2}-7x+\frac{49}{4}. సాధారణంగా, x^{2}+bx+c ఖచ్చితమైన చతురస్రం అయినప్పుడు అది ఎల్లప్పుడూ \left(x+\frac{b}{2}\right)^{2}గా కారకం చేయబడుతుంది.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
సమీకరణము యొక్క రెండు భాగాల యొక్క లాగరిథమ్ను వర్గమూలాన్ని తీసుకోండి.
x-\frac{7}{2}=\frac{1}{2} x-\frac{7}{2}=-\frac{1}{2}
సరళీకృతం చేయండి.
x=4 x=3
సమీకరణం యొక్క రెండు వైపులా \frac{7}{2}ని కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}