మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-y=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
5x-2y=4,x-y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x-2y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=2y+4
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
x=\frac{1}{5}\left(2y+4\right)
రెండు వైపులా 5తో భాగించండి.
x=\frac{2}{5}y+\frac{4}{5}
\frac{1}{5} సార్లు 4+2yని గుణించండి.
\frac{2}{5}y+\frac{4}{5}-y=-2
మరొక సమీకరణములో xను \frac{4+2y}{5} స్థానంలో ప్రతిక్షేపించండి, x-y=-2.
-\frac{3}{5}y+\frac{4}{5}=-2
-yకు \frac{2y}{5}ని కూడండి.
-\frac{3}{5}y=-\frac{14}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{4}{5}ని వ్యవకలనం చేయండి.
y=\frac{14}{3}
సమీకరణము యొక్క రెండు వైపులా -\frac{3}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{5}\times \frac{14}{3}+\frac{4}{5}
x=\frac{2}{5}y+\frac{4}{5}లో yను \frac{14}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{28}{15}+\frac{4}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{2}{5} సార్లు \frac{14}{3}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{8}{3}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{28}{15}కు \frac{4}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{8}{3},y=\frac{14}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-y=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
5x-2y=4,x-y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-2\right)}&-\frac{-2}{5\left(-1\right)-\left(-2\right)}\\-\frac{1}{5\left(-1\right)-\left(-2\right)}&\frac{5}{5\left(-1\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{2}{3}\\\frac{1}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}4\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 4-\frac{2}{3}\left(-2\right)\\\frac{1}{3}\times 4-\frac{5}{3}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\\frac{14}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{8}{3},y=\frac{14}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-y=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
5x-2y=4,x-y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5x-2y=4,5x+5\left(-1\right)y=5\left(-2\right)
5x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
5x-2y=4,5x-5y=-10
సరళీకృతం చేయండి.
5x-5x-2y+5y=4+10
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 5x-5y=-10ని 5x-2y=4 నుండి వ్యవకలనం చేయండి.
-2y+5y=4+10
-5xకు 5xని కూడండి. 5x మరియు -5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
3y=4+10
5yకు -2yని కూడండి.
3y=14
10కు 4ని కూడండి.
y=\frac{14}{3}
రెండు వైపులా 3తో భాగించండి.
x-\frac{14}{3}=-2
x-y=-2లో yను \frac{14}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{8}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{14}{3}ని కూడండి.
x=\frac{8}{3},y=\frac{14}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.